本探究答案由瞿昱煒同學提供
1、背景分析與知識串聯:
整式的「豎式乘法」和「豎式除法」其實是很容易理解的,計算的方式可以直接從整數的「豎式乘法」和「豎式除法」直接遷移過來,只是需要理解用「指數」來表示「位值」的這樣一種轉換。而「綜合除法」實際上一種特殊的整式「豎式除法」,當除式是一個一次多項式的時候,「豎式除法」可以簡寫成「綜合除法」,在實際中的應用就是:我們能夠不寫長除的繁瑣步驟而直接快速得到任意一個整式除以一個一次多項式的商式和餘式。
2、探究設計思路:
(1)第1個問題,要求學生用「豎式乘法」以及「分離係數法」來計算整式的乘法。其實在講授「十字相乘法」的課堂上,就應該已經滲透過「豎式乘法」的思想了,就應該算是熱身。
(2)第2個問題,要求學生用「豎式除法」以及「分離係數法」來計算整式的除法。注意計算的時候不要出錯即可。
(3)第3個問題,引出「綜合除法」,給出範例,要求學生根據範例嘗試完成。至於學生如何證明「綜合除法」的正確性,如果學生能想到根據長除法來進行驗證發現兩者答案相同,我覺得就達到基本目的了;一些程度比較好的學生,如果能夠想到用待定係數法去證明任何一個整式除以一個一次多項式都能夠用「綜合除法」來做,就很好了。
3、數學思想方法:
特殊與一般思想——由特殊到一般、再由一般到特殊的反覆認識