從任意一個正整數開始,重複對其進行下面的操作:如果這個數是偶數,把它除以 2 ;如果這個數是奇數,則把它擴大到原來的 3 倍後再加 1 。你會發現,序列最終總會變成 4, 2, 1, 4, 2, 1, … 的循環。
例如,所選的數是 67,根據上面的規則可以依次得到:
67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17,
52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...
數學家們試了很多數,沒有一個能逃脫「421陷阱」。但是,是否對於所有的數,序列最終總會變成 4, 2, 1 循環呢?
這個問題可以說是一個「坑」——乍看之下,問題非常簡單,突破口很多,於是數學家們紛紛往裡面跳;殊不知進去容易出去難,不少數學家到死都沒把這個問題搞出來。已經中招的數學家不計其數,這可以從 3x + 1 問題的各種別名看出來:3x+1問題又叫 Collatz 猜想、Syracuse 問題、 Kakutani 問題、 Hasse 算法、 Ulam 問題等等。後來,由於命名爭議太大,乾脆讓誰都不沾光,直接叫做 3x+1問題算了。
直到現在,數學家們仍然沒有證明,這個規律對於所有的數都成立。