中科院化學所在有機半導體晶相調控方面取得系列進展

2021-02-15 高分子科技

中科院化學所有機固體實驗室研究人員利用溶液過飽和度、氣相擴散溫度梯度、表面納米溝槽等誘導效應,對有機半導體晶相生長的熱力學和動力學過程進行調控,獲得了堆積結構緊密的單晶或晶態膜,表現出非常高的載流子遷移率。通過選擇不同的溶液濃度控制其過飽和度,首次可控地製備了硫雜並苯衍生物的不同晶相的單晶。β晶體(HOMO-1)能級之間的電子耦合作用明顯高於α晶體,並對電荷傳輸性能起主導作用,導致β單晶載流子遷移率高達18.9 cm2 V-1 s-1,證實了不同的堆積結構能造成非簡併(HOMO-1)能級電子耦合作用的顯著差異,從而對電荷傳輸產生重要的影響,為有機半導體堆積結構的調控提供了一種新的理念和思路(Adv. Mater. 2015, 27, 825)。 

進一步採用物理氣相傳輸的方法,通過控制溫度梯度,第一次選擇性地得到了酞菁氧鈦的α和β兩個晶相的單晶,構築了單晶場效應電晶體。α晶相具有典型的二維電荷傳輸通道,最高載流子遷移率為26.8 cm2 V-1 s-1,是酞氰類有機半導體的最高值。β晶相具有三維電荷傳輸通道,層與層之間具有較強的電子耦合作用,其方向與電荷傳輸方向垂直,幹擾了電荷傳輸行為,只獲得了最高0.1 cm2 V-1 s-1的遷移率。這一發現突破了「三維電荷傳輸半導體優於低維半導體」的傳統看法,說明了分子層間的電子耦合作用對於電荷輸運具有重要的影響(Angew. Chem. Int. Ed. 2016, 55, 5206)。 

相關焦點

  • 化學所在高效單組份有機發光場效應電晶體方面取得進展
    化學所在高效單組份有機發光場效應電晶體方面取得進展 2019-09-12 化學研究所 【字體:大 中 小】 鑑於此,在中國科學院先導項目和國家自然科學基金委支持下,中科院化學研究所有機固體重點實驗室科研人員近年來在高遷移率發光材料方面開展了研究,提出了「蒽拓展並五苯類似物」的光電一體化分子設計思想,發展了系列具有優異高遷移率和發光性能的有機半導體材料體系(Nat. Commun. 2015, 6, 10032; J. Am. Chem. Soc. 2017, 139, 17261, Adv.
  • 化學所在RNA表觀遺傳修飾的化學調控研究方面取得進展
    然而由於RNA本身的不穩定性,使得在活細胞水平進行化學調控變得異常艱難。  在國家自然科學基金委、科技部和中國科學院的支持下,中科院化學研究所分子識別與功能重點實驗室研究員程靚團隊長期從事該領域的基礎研究,發展了一系列針對重要RNA表觀遺傳修飾的高選擇、高靈敏、時空分辨的化學轉化、螢光標記的原理和方法。
  • 化學所在新型pi-分子材料的設計及應用研究中取得系列進展
    化學所在新型pi-分子材料的設計及應用研究中取得系列進展 2016-12-27 化學研究所 【字體:大 中 小】
  • 化學所在生物分子馬達組裝體性能調控方面取得新進展
    以活性生物大分子為構築基元,利用分子組裝策略設計與構建仿生體系,模擬或調控生命體基本單元的結構和功能,已成為化學與生命科學交叉的前沿和熱點。  在國家自然科學基金委、科技部和中國科學院的支持下,中科院化學研究所膠體、界面與化學熱力學重點實驗室研究員李峻柏課題組長期致力於生物分子馬達ATP合酶的分子組裝與應用研究,並取得了系列進展。
  • 化學所在配位組裝薄膜方面取得新進展
    化學所在配位組裝薄膜方面取得新進展 2018-10-19 化學研究所 【字體:大 通過自組裝、共價鍵合、電化學聚合等方法將光電功能分子沉積於電極表界面,所得到的薄膜在光電互換、信息存儲、電致變色、生物和離子檢測等方面有重要應用。
  • 化學所在非富勒烯型聚合物太陽能電池研究中取得系列進展
    化學所在非富勒烯型聚合物太陽能電池研究中取得系列進展 2016-07-01 化學研究所 【字體  非富勒烯型聚合物太陽能電池不僅需要高性能的受體材料,而且需要對聚合物給體的化學結構和光電特性進行細緻的調控。
  • 化學所在金屬配合物低維晶體方面取得新進展
    低維有機晶態材料具有規整度高和結構缺陷少的特點,是揭示材料本徵特性和構築高性能光電器件的最佳選擇之一,近年來在有機半導體電子學和納米光子學等方面取得重要應用。考慮有機分子的組裝特點,通常使用具有較強分子間作用力的平面型有機分子來製備高規整度的低維晶體。
  • 材料學院團隊在三線態有機半導體材料領域取得系列重要進展
    如何通過分子設計方法實現系間竄越常數的有效調控,開發高性能三線態有機半導體材料,是一項非常具有挑戰性的工作。  近期,中國科學院大學(以下簡稱「國科大」)材料科學與光電技術學院黃輝教授研究團隊在三線態有機半導體材料的光電和生物等應用領域取得了一系列重要科研進展,提出了新的材料設計思想和方法。
  • 半導體所在柔性一維光電探測器研究方面取得系列進展
    最近,中國科學院半導體研究所超晶格國家重點實驗室研究員沈國震課題組,在一維無機分枝同質/異質納米線製備及柔性光電探測研究方面取得了系列進展。 半導體所在柔性一維光電探測器研究方面取得系列進展
  • 化學所在漆酶生物電化學和電催化研究方面取得進展
    近期,在國家自然科學基金委、科技部、中科院和中國博士後基金的支持下,他們在漆酶直接電催化氧還原研究方面取得了新進展。進一步,他們發現,有機溶劑的調控作用與其極性、致酶變能力以及蒸汽壓等密切相關。其中,同樣具有較低極性、弱致酶變能力、高蒸汽壓的丙酮和乙腈也能夠增加電極對於氧氣的電化學催化電流。相反,具有較高極性、強致酶變能力、低蒸汽壓的二甲基甲醯胺和二甲亞碸,則會導致電極對於氧氣的電化學還原幾乎失去活性。相對於已報導的提高漆酶電催化活性的方法,利用有機溶劑分子提高漆酶的直接電催化性能則更簡單有效。
  • 我國學者在有機汙染物光催化降解及機理研究方面取得系列進展
    在國家自然科學基金委的持續支持下,中國科學院化學研究所趙進才課題組在光催化降解有機汙染物及其機理方面進行了十幾年的系統深入研究,取得一系列重要研究進展。  低濃度、高毒性、難降解有機汙染物是一類普遍存在、具有長期危害性的環境汙染物,用傳統方法很難處理。
  • 化學所在氧自由基研究方面取得系列進展
    氧自由基是一類典型重要的化學反應中間體,它們廣泛存在於大氣、化學、生命等過程,氧自由基的捕捉與研究非常困難。在國家自然科學基金委、中科院、科技部的資助下,化學研究所分子動態與穩態結構實驗室的科研人員提出了新的研究思路:把氧自由基製備到具有明確分子結構的團簇上,通過調控團簇組成、尺寸、電子結構等因素認識氧自由基的結構與反應性,取得了系列研究進展。
  • 蘇州納米所在矽襯底InGaN基半導體雷射器研究方面取得進展
    蘇州納米所在矽襯底InGaN基半導體雷射器研究方面取得進展 2016-08-18 蘇州納米技術與納米仿生研究所 將InGaN基雷射器直接生長在矽襯底材料上,為GaN基光電子器件與矽基光電子器件的有機集成提供了可能。
  • 化學所在纖維素基固態螢光材料及應用方面取得系列進展
    纖維素高分子鏈上周期性分布著豐富的羥基基團,具備優異的化學可修飾性,通過纖維素的均相反應,可將不同功能基團引入到纖維素鏈上,從而賦予纖維素新的性能,是實現纖維素高值化利用的有效途徑(Mater. Chem. Front., 2017, 1, 1273)。
  • FeOOH晶相結構及晶相依賴的電化學分析行為研究取得進展
    FeOOH晶相結構及晶相依賴的電化學分析行為研究取得進展 2020-01-15 合肥物質科學研究院 而闡明納米材料的結構與電化學性能之間的關係對於設計有效的敏感界面具有重要指導意義。
  • 上海有機所在活細胞內的光催化生物相容反應研究中取得進展
    上海有機所在活細胞內的光催化生物相容反應研究中取得進展 2019-01-03 上海有機化學研究所   中國科學院上海有機化學研究所生命有機化學國家重點實驗室陳以昀課題組致力於發展新的生物相容光化學方法用於化學及生物學的研究,主要研究內容包括新型光反應發現及新型光化學生物學工具的發展。課題組前期研究工作中建立了可見光引發氧化及還原反應的生物大分子相容性(J. Am. Chem. Soc.
  • 中科院化學所在染料敏化太陽能電池研究領域取得新進展
    在國家自然科學基金委、科技部和中國科學院的支持下,化學所新材料實驗室相關研究人員在染料敏化太陽能電池相關研究方面取得了一系列進展。 染料是染料敏化太陽電池中的關鍵組成成分。新材料實驗室研究人員通過材料結構設計和合成,在聯吡啶釕染料(Inorg. Chimica. Acta., 2008, 361, 783-785;Chem.
  • 上海有機所在多環天然產物全合成研究中取得進展
    中國科學院上海有機化學研究所李昂課題組近期完成了系列多環天然產物的全合成 (Angew. Chem. Int. Ed.  此項研究得到了中科院戰略性先導科技專項(B類)、國家自然科學基金傑出青年科學基金、創新研究群體等的資助。
  • 理化所發光碳量子點研究取得系列進展
    在國家自然科學基金支持下,中國科學院理化技術研究所分散體系化學與材料研究組自2008年以來圍繞發光碳量子點的製備、性能及其相關材料研究開展了一系列工作,取得良好的進展。最近兩年在合成方法、相關材料設計製備方面取得突破性進展。
  • 大連化物所在二維金屬有機骨架分離膜研究中取得新進展
    近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室研究員楊維慎團隊在二維金屬有機骨架(Metal-Organic Frameworks, MOFs)氣體分離膜研究方面取得新進展,相關結果發表在《德國應用化學》(Angew. Chem. Int. Ed., DOI: 10.1002/anie.201703959)上。