專題一:函數定義域和解析式求法

2020-12-06 中原說教育

函數的定義域、值域和解析式是高一的重點和難點之一,也是高考常備考點之一,學號本章對於今後的高考有著至關重要的作用,下面,我們通過分析試題的方式來學習函數的定義域、值域和解析式的求法。

函數的定義域、值域和解析式

01複合函數求定義域的題型

注意1:不管括號中的形式多複雜,定義域只是自變量的取值集合。

注意2:在同一函數作用下,括號內整體的取值範圍相同。

題型1:已知的定義域,求的定義域:

例題:已知f(x)的定義域是[1,2],求f(2x-1)的定義域

由於平臺不支持對應的數學字符的書寫,所以將試題以截圖的方式顯示,具體如下圖(包含了試題內容和解析內容):

試題內容和解析內容

實例二:反過來已知複合函數的定義域,求f(x)的定義域,具體試題階級氣息如下:

過來已知複合函數的定義域

實例三:已知複合函數的定義域,求另一複合函數的定義域:

知複合函數的定義域,求另一複合函數的

若函數f(x)=sqrt(ax*x + 2x +1)的定義域為R,則實數a的取值範圍是__________.

該試題等價於g(x)=ax*x + 2x +1>=0對於一切實數都成立,所以ax*x + 2x +1=0的△<=0且a>0是恆成立的,△=4-4a<=0,解方程得到a>=1。

02鞏固練習

下圖展示了對於上述問題的鞏固過程,並給出相應的答案,看看你都會了嗎?

鞏固練習

師範解析:-5<=3-2x<=5,3-2x>=-5和3-2x<=5.

X*x >=1 ,x<=-1,或者x>=1, x*x <=4 ,-2<=x<=2

03確定函數解析式的方法

構造法已知f [g(x)]的解析式,要求f(x)的解析式,從f[g(x)]的解析式中拼湊出「g(x)」,兩邊用「x」代替「g(x)」,即可得到f(x)的解析式。

示例1:

示例

換元法:已知函數f [g(x)]的解析式,令g(x)=t,求f(t)的解析式,用x代替兩邊所有的t,即可。

示例2:

示例2

方程組法:已知f(x)與f[g(x)]滿足的關係式,要求f(x)時,用g(x)代替兩邊所有的x,

得到關於f(x),f[g(x)]的方程組,解方程組得到f(x)。

示例3:

示例3

待定係數法:

待定係數法

示例4:

示例4

本節內容就介紹到這裡,下一節將對函數的值域做詳細介紹。

相關焦點

  • 一文讀懂函數解析式的求法
    函數解析式的求法向來是高中數學的重點和難點部分,該部分內容在高考中經常遇到,能夠快速的求到函數解釋式對於高考想要拿高分的同學是必不可少的。本節就主要介紹各種函數解析式的求法,希望對大家有所幫助!函數解析式的求法函數解析式的求法主要分為以下幾類:構造法
  • 題型歸納:函數的定義域、值域的求法最全總結,含例題,可列印!
    同學們在做函數題的時候,有很多題都會考到定義域和值域這兩個知識點,很多同學只要碰到這些類型的題目,都覺得很難,不知道怎麼去正確地解題,老師今天就帶領大家一個知識點一個知識點的去過。首先求值域的話,同學們就需要知道11個求值域的方法,它們分別是:直接法、圖像法(數形結合)、函數單調性法、配方法、換元法(包括三角換元)、反函數法(逆求法)、分離常數法、判別式法、複合函數法、不等式法和平方法,學會運用這些方法的解題思路,那麼你的數學思維都將提升一個檔次。想要求定義域的話,也有六大方法可遵循,在這裡老師就不一一介紹了,同學們可以從老師下面分享的資料中得知的。
  • 高中數學:求函數解析式的方法,數學困難戶,拿起筆頭,奮起直追
    原標題:高中數學:求函數解析式的方法,數學困難戶,拿起筆頭,奮起直追 高中數學:求函數解析式的方法,數學困難戶,拿起筆頭,奮起直追 Hello,大家好!我是北大的劉天嬌! 每天與您相約!
  • 高中函數不知道怎麼學?函數定義域,值域,單調性求法最全總結
    現在為止函數的單調性你明白了嗎?其實很簡單,在給定的函數定義域內,如果橫坐標大,縱坐標也大的函數為單調遞增函數,橫坐標大縱坐標卻小的函數為單調遞減函數。什麼是函數的值域?函數值的集合{f(x)|x∈A}叫做函數的值域.A是函數的定義域.
  • 高中數學10種常見函數的定義域和值域整理
    函數的三要素,即定義域、值域、對應關係中涉及了函數定義域和值域的求法。除此之外,判斷相等函數也是考試中的高頻考點,由於多為選擇題,我們也往往需要藉助「定義域和值域不同的兩個函數不是相等函數」這一知識點用排除法來做題。由此,一個函數定義域和值域也就成為了一個必備的知識技能。下面整理了高一數學常見函數的定義域和值域。
  • 30年考研數學真題分類解析|專題一:反函數與複合函數
    真題及解析【分析】分段函數的複合函數。主要注意函數複合過程中,內層函數的值域與外層函數的定義域的交集非空。【分析】本題主要是要弄清楚反函數和原函數的定義域、值域之間的關係.【評註】從2002年至今差不多20年,考研數學在反函數與複合函數部分並沒有單獨出題。但近些年考研數學都出現了多年未見的題型,如2018年數學一的假設檢驗,2020年數學一求函數解析式。2021年考研數學會不會在分段函數的複合函數及反函數方面習題呢?知識點連結一、反函數1、定義設 y=f(x) 的定義域為 X ,值域為 Y 。
  • 高中數學——6種求函數解析式的基本方法及例題詳解
    1.待定係數法例1.求一次函數y=f(x)解析式,使f(f(x))=4x+3.解:設f(x)=ax+b(a≠0).總結:當已知函數類型時,求函數解析式,常用待定係數法。其基本步驟:設出函數的一般式,代入已知條件通過解方程(組)確定未知係數。
  • 2019高考數學總複習專題002,各種基本函數的定義域和值域
    2019高考數學總複習專題002內容包括指數函數、對數函數、反比例函數、二次函數、冪函數以及它們之間的複合函數的定義域與值域問題;題型包括:給出函數表達式求函數的值域,求函數的定義域;給出函數的值域求定義域;特別是求複合函數的定義域和值域;給出值域求參數的範圍等等。
  • 這6道題全懂了,求對數函數的定義域和值域再不作難了
    高考數學複習,這6道題全懂了,求對數函數的定義域和值域再不作難了。求對數函數的定義域,相對來說比較簡單,主要考慮的是真數必須大於0。其中不等式②的解法一定要熟悉,下面列出了兩種解法,解法一,就是把0用真數為1的同底對數來表示,然後根據1/3為底的對數單調遞減來求x的範圍,這種解法是常規解法;我更願意使用解法二,即最後一行給出的推薦解法。
  • 複合函數單調性的求法
    關鍵詞:複合函數,單調性複合函數的單調性口訣:同增異減其具體含義為:內外函數的單調性相同(同),則複合函數為增函數(增);內外函數的單調性相反(異),則複合函數為減函數(減)。關鍵:因為外函數的定義域是內函數的值域,所以判斷外函數的單調性時,判斷的是外函數在內函數的值域上的單調性。
  • 【高分方法】函數值域的求法
    一.觀察法 通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域。 練習: 求函數y=[x](0≤x≤5)的值域。 (答案:值域為:{0,1,2,3,4,5}) 二.反函數法 當函數的反函數存在時,則其反函數的定義域就是原函數的值域。
  • [高中數學精講專題]函數的定義域和值域經典題型
    一、高中數學函數的定義域如果只給出解析式y=f(x),而沒有指明它的定義域,那麼函數的定義域就是指能使這個式子有意義的自變量的集合。典例1:求下列函數的定義域:二、高中數學函數的值域易錯點:用換元法解題時沒注意換元前後的等價性,
  • 十分鐘學會值域的各種求法
    的值域。解析:由換元法主要是把題目中出現多次的一個複雜的部分看作一個整體,通過簡單的換元把複雜函數變為簡單函數,我們使用換元法時,要特別注意換元後新元的範圍(即定義域)。換元法是幾種常用的數學方法之一,在求函數的值域中發揮很大作用。★ 例2、若
  • 高中數學求函數值域問題的方法匯總。
    一 、反函數法  利用函數和它的反函數的定義域與值域的關係,通過求反函數的定義域而得到原函數的值域。  例如求函數的值域,這種類型的題目也可採用分離常數法。  ★ 例1、求函數的值域。  解析:由解得  因為,所以,則  故函數的值域為。  二、換元法  換元法主要是把題目中出現多次的一個複雜的部分看作一個整體,通過簡單的換元把複雜函數變為簡單函數,我們使用換元法時,要特別注意換元後新元的範圍(即定義域)。換元法是幾種常用的數學方法之一,在求函數的值域中發揮很大作用。
  • 函數定義域、值域方法總結
    (一)求函數定義域1、函數定義域是函數自變量的取值的集合,一般要求用集合或區間來表示;2、常見題型是由解析式求定義域
  • 高中數學:函數的專題知識-關於函數的單調性與最值問題講練PPT
    (2)複合法:同增異減,即內外函數的單調性相同時為增函數,不同時為減函數.(3)圖象法:如果f(x)是以圖象形式給出的,或者f(x)的圖象易作出,可由圖象的直觀性判斷函數單調性.(4)導數法:利用導函數的正負判斷函數單調性.2.證明函數的單調性有定義法、導數法.但在高考中,見到有解析式,儘量用導數法.
  • 你知道反函數及其求法和複合函數、函數的四個基本性質嗎?
    大家好,我是專升本數學學霸,這次我們繼續來討論反函數及其求法和複合函數、函數的四個基本性質。那你知道反函數及其求法和複合函數、函數的四個基本性質嗎?學霸來幫你來了。一般來說,設函數y=f(x)(x∈A)的值域是C,若找得到一個函數g(y)在每一處g(y)都等於x,這樣的函數x= g(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數,記作x=f-1(y) 。反函數x=f -1(y)的定義域、值域分別是函數y=f(x)的值域、定義域。最具有代表性的反函數就是對數函數與指數函數,三角函數和反三角函數等。
  • 函數的三要素之定義域詳解
    一般函數的定義域和抽象函數的定義域詳解函數的三要素:定義域,值域和表達式,都是非常重要的內容,出題人會經常在此處做文章,大家一定要將這三塊內容學紮實了哦。本次課程我們結合出題人的意圖和相關的高考考點為大家講解函數的定義域。
  • 九數上:用待定係數法求二次函數解析式,這3種方法必掌握
    用待定係數法求一次函數的解析式,方法大致就是先設出一次函數的解析式y=kx + b(k≠0),然後通過帶入圖像上的已知點,得到關於k、b的二元一次方程組,解出k,b的值,再回代到所設的函數中,即可求出原函數的解析式。
  • 微積分之第二坑:函數定義域缺失
    微積分之第二坑:函數定義域缺失微積分學習中除了對於抽象函數重視不夠導致對函數的內涵和外延無法弄清楚造成後續很多概念產生混淆之外,最為低級的「坑」則是不關注函數的定義域。我們知道在中學期間學習的都是基本初等函數:常數函數、冪函數、對數函數、指數函數、三角函數和反三角函數,這些函數的定義域都是自然定義域,大家都很清楚,而對於初等函數來說,則增加了函數的四則運算和複合運算,這需要對和函數、差函數以及其他關於函數的四則運算、混合運算構成的新的函數的自變量的範圍進行界定,也就是求定義域。