Plant Cell:高等植物維管束分化調控機理新進展

2021-01-10 生物谷

在進化過程中,導管的出現是陸生高等植物成功的主要原因。導管的分化過程經歷了細胞伸長、細胞壁局部加厚和細胞程序化死亡3個階段。與真菌和動物不同,保守的exocyst分泌複合體的EXO70亞基在高等植物基因組中大量擴增。

中科院植物研究所劉春明組對在分化的導管細胞特異表達的EXO70A1進行了深入研究,發現該基因參與了擬南芥導管分化,通過控制囊泡的定向運輸決定導管細胞壁定點增厚。該研究對於了解高等植物維管束分化調控機理具有重要意義。(生物谷Bioon.com)

生物谷推薦英文摘要:

Plant Cell  doi:10.1105/tpc.113.112144

EXO70A1-Mediated Vesicle Trafficking Is Critical for Tracheary Element Development in Arabidopsis

Exocysts are highly conserved octameric complexes that play an essential role in the tethering of Golgi-derived vesicles to target membranes in eukaryotic organisms. Genes encoding the EXO70 subunit are highly duplicated in plants. Based on expression analyses, we proposed previously that individual EXO70 members may provide the exocyst with functional specificity to regulate cell type– or cargo-specific exocytosis, although direct evidence is not available. Here, we show that, as a gene expressed primarily during tracheary element (TE) development, EXO70A1 regulates vesicle trafficking in TE differentiation in Arabidopsis thaliana. Mutations of EXO70A1 led to aberrant xylem development, producing dwarfed and nearly sterile plants with very low fertility, reduced cell expansion, and decreased water potential and hydraulic transport. Grafting of a mutant shoot onto wild-type rootstock rescued most of these aboveground phenotypes, while grafting of a wild-type shoot to the mutant rootstock did not rescue the short root hair phenotype, consistent with the role of TEs in hydraulic transport from roots to shoots. Histological analyses revealed an altered pattern of secondary cell wall thickening and accumulation of large membrane-bound compartments specifically in developing TEs of the mutant. We thus propose that EXO70A1 functions in vesicle trafficking in TEs to regulate patterned secondary cell wall thickening.

 

相關焦點

  • Plant Cell︱植物根毛細胞命運轉換的分子基礎研究新進展
    更廣泛地說,本研究闡明了逆境條件和植物細胞命運控制之間的一種新的調控聯繫。文章連結:http://www.plantcell.org/content/early/2020/05/05/tpc.19.00773IN BRIEF 文章連結:http://www.plantcell.org/content/early/2020/05/05/tpc.20.00313推薦閱讀:Molecular
  • Plant Cell:植物種子和器官大小調控機理
    植物種子和器官大小是重要的產量性狀,大小調控也是一個基本的發育生物學問題。然而,植物決定其種子和器官最終大小的分子機理目前並不清楚。為了揭示植物種子和器官大小調控的分子機理,中國科學院遺傳與發育生物學研究所李雲海研究組已在擬南芥中分離了一些大種子和器官的突變體da (DA是漢字「大」的意思)。其中,da1-1 突變體形成大的種子、器官和粗壯的植株。
  • Plant Cell | 遺傳所周奕華研究組在細胞壁高級結構形成調控研究中取得新進展
    該研究發現了一種新的多糖乙醯酯酶(阿拉伯糖乙醯酯酶,DARX1),並揭示其調控水稻木聚糖乙醯化和細胞壁高級結構的機理。細胞壁是多糖組成的複雜網絡結構,這些多糖經摺疊、交聯,形成適應植物生長發育所需的細胞壁高級結構。研究細胞壁高級結構形成的精準調控機制是植物學新的學科前沿。
  • Plant Cell | 中科院版納植物園研究團隊揭示茉莉酸信號調控根毛...
    茉莉酸(Jasmonate, JA)激素是植物體內一類非常重要的脂類生長調節物質,參與調控植物某些重要的生長發育過程以及對環境因子的響應,如葉片表皮毛的起始、花青素的積累及抗凍害反應等。根毛是根表皮細胞特化形成的一種單細胞管狀突出物,它們能有效增加根的表面積,促進植物對水分和養分的吸收,從而在植物適應環境的過程中發揮重要的作用。根毛的生長發育過程受到多種環境因子和內源信號的影響。前人研究發現茉莉酸可以影響植物根毛的發育過程,然而相應的分子調控機理及信號傳導通路仍不清晰。
  • The Plant Cell :解析茉莉酸調控植物免疫的轉錄重編程機理
    茉莉酸是來源於不飽和脂肪酸的植物免疫激素,其生物合成途徑和化學結構與高等動物中的免疫激素前列腺素有極高的類似性。在受到機械傷害、咀嚼式昆蟲和死體營養型病原菌的侵害時,植物激活茉莉酸信號通路,啟動並級聯放大茉莉酸介導的轉錄重編程,從而產生有效的防禦反應。但目前對茉莉酸激活植物免疫轉錄重編程的機理所知甚少。中國科學院遺傳與發育生物學研究所李傳友研究組長期以番茄為模式植物,研究茉莉酸調控植物免疫的分子機理。
  • Plant Cell:郭紅衛植物衰老研究獲重要進展
    因此,植物衰老的進程可以大幅度地影響農業生產的效益,比如糧食的產量及其品質,據在主要作物(玉米, 大豆、棉花、水稻、小麥)上的估算,後期功能葉片晚衰一天,產量可增加2-10%。葉片衰老受植物體內、外信號調節,氣體激素乙烯長期以來被認為是一種植物衰老激素,可顯著加速葉片的衰老,但其具體的分子作用機制不清楚。
  • Plant Cell|細胞分裂素調控植株再生新機制
    近日,生命科學學院、植物發育與環境適應生物學教育部重點實驗室向鳳寧教授團隊在植株再生調控機制上取得重要突破。植物器官、組織及細胞在離體培養條件下可再生植株,體現出植物細胞具有「全能性」(totipotency)。早在一個世紀前植物組織培養體系已建立,廣泛應用於中藥材、花卉、林草及作物的快速繁殖及基因工程育種。但迄今為止,植物細胞「全能性」機理仍不清楚。
  • Plant Cell | 硫化氫調控植物細胞自噬的新機制
    硫化氫(Hydrogen sulfide,H2S)是目前公認的一種信號分子,在植物生長發育及逆境脅迫方面起著重要作用,包括細胞自噬和脫落酸(AbscisicAcid, ABA)調控的氣孔運動【1-3】。
  • Plant Cell | 種子休眠調控新機制
    2019-04-11 15:25:03 來源: BioArt植物 舉報
  • Plant Cell:水楊酸合成與植物免疫調控
    水楊酸(SA)是植物抗病中的重要激素,它的合成受到精密調控。該文章報導了轉錄因子EIN3和EIL1直接結合在水楊酸合成基因SID2的啟動子區,抑制水楊酸的合成, 從而負調控植物免疫反應。結果還揭示了乙烯信號途徑和水楊酸信號途徑間新的交叉調控。
  • Plant Physiol. | 中科院上海植生所揭示水稻葉枕發育細胞學基礎和調控機制
    目前對水稻葉枕發育/葉傾角調控的研究多集中在對葉傾角變化的表型描述上,對其形成的細胞學基礎和分子調控機理及互作調控網絡的解析仍顯不足。植物激素是葉傾角形成的重要調節因子,通過測定葉枕不同發育階段中的多種激素含量並結合一個生長素含量改變的水稻突變體(lc1-D)的基因表達譜,分析表明油菜素甾醇、生長素、赤黴素、細胞分裂素等在葉枕發育的早期促進細胞分化和生長;乙烯、茉莉酸、水楊酸等主要在後期調節葉枕的成熟、衰老和逆境響應;不同激素見通過互作調控了葉枕發育。
  • Plant Cell:揭秘細胞分裂
    來自中科院遺傳與發育生物學研究所,雲南農業大學的研究人員利用圖位克隆的方法,在水稻中克隆了植物中首個Bub1同源基因BRK1(Bub1-related kinase1),為解析細胞分裂過程中紡錘體組裝提出了新觀點,相關研究結果發表在12月15日在Plant Cell雜誌上。
  • Plant Cell|兩個相互作用的乙烯響應因子調節植物的熱脅迫響應
    乙烯作為一種植物內源激素,參與調控從種子萌發到組織衰老的許多生理和發育過程【3】。除了調節植物的生長發育外,乙烯還參與了對各種脅迫的反應,包括熱脅迫【4-6】。然而,乙烯參與熱脅迫響應的分子機制還不清楚。
  • 山東農大揭示激素調控植物幹細胞的機理—新聞—科學網
    植物也有幹細胞,而且和動物幹細胞一樣,在一定條件下可以分化成多種功能細胞,是高等生物生長發育的細胞來源。
  • GA/IAA比值的高低分別調控形成層產生韌皮部與木質部的組織分化
    細胞的分化是複雜的生物化學過程,其機理尚不清楚。組織培養的試驗提供了一些證據。由愈傷組織誘導分化出根和芽,是由生長素和細胞分裂素含量的比值決定的。例如,在菸草愈傷組織培養中,當IAA/CTK比值高時,易形成根;當IAA/CTK比值低時,則易形成芽。其它植物的愈傷組織分化形成根和芽,也符合這一原則。
  • 研究揭示植物花青素合成調控機理
    本文通過解析赤黴素信號轉導途徑中關鍵因子DELLA蛋白調控花青素合成的分子機理,揭示了植物通過調控次生代謝產物合成適應環境變化的新機制。植物雖然不會移動,但也能像動物一樣感知環境的變化並精準應對。大量的研究表明植物抵禦環境脅迫的強大武器就是產生種類豐富的次生代謝產物。
  • Plant Cell| 揭示春化作用使植物的源庫身份發生逆轉的分子機制
    植物具有非凡的儲存能量的能力,首先是利用光子的能量將碳固定在光合組織器官(源)中。反過來,固定下來的碳被運輸到不同的植物組織(庫),以推動生長和發育。同時,富含碳儲存的庫器官後來可以成為源,因為它們可以調動其儲存的產物來為新出現的源組織供能。植物器官作為庫或源的身份是一個動態過程,既由內源發育信號指定,也由特定環境刺激的響應,這是一個由內源發育信號和特定環境刺激共同決定的動態過程。
  • 上海生科院揭示植物花青素合成調控機理
    本文通過解析赤黴素信號轉導途徑中關鍵因子DELLA蛋白調控花青素合成的分子機理,揭示了植物通過調控次生代謝產物合成適應環境變化的新機制。  植物雖然不會移動,但也能像動物一樣感知環境的變化並精準應對。大量的研究表明植物抵禦環境脅迫的強大武器就是產生種類豐富的次生代謝產物。
  • Plant Cell:李傳友等發現轉錄中介體複合物調控茉莉酸信號途徑新機制
    在植物激素信號轉導研究中,人們主要關注激素特異的轉錄因子的作用,但對於轉錄中介體的功能及作用機理所知甚少。 李傳友實驗室最近的研究揭示了擬南芥轉錄中介體複合物在茉莉酸信號途徑中的功能及作用機理。MYC2是茉莉酸信號通路的核心轉錄因子,調控茉莉酸反應的多個方面,包括根生長、機械受傷反應和抗病反應等。
  • 中山大學肖仕課題組發文綜述總結脂質調控植物低氧應答的研究進展
    中山大學肖仕課題組發表特邀綜述總結脂質調控植物低氧應答的研究進展責編 | 逸雲目前,極端氣候頻繁發生hypoxia responses的綜述論文,總結了植物響應低氧逆境過程中脂質的適應性變化和內在調整機制,並討論了多個重要脂分子參與植物低氧應答的分子機制及最新前沿進展。