一分鐘數學——等比數列求和

2021-01-14 無憂公主的數學時間

等比數列求和


什麼是等比數列?例如 3、6、12、24 就是,意思是第一項任意,隨後的每一項都是前面的一項乘以固定數(公比)。可能有同學發現了,這和等差數列很像啊,唯一的區別就是乘以公比和加公差。既然等差數列有求和公式,等比數列有嗎?怎麼求呢?


我們列出的算式是:




為了得到一個等比數列,要素是首項、公比 q。把原式轉化成下面的算式,並列出第二個算式進行抵消。






現在將第一個算式減去第二個算式,得:




別以為我們已經獲得了最終的公式了,還少了一個條件呢。如果q=1會如何?分母是 0,顯然行不通。當 q=1 時,這個等比數列的求和公式就是:S=任何一項×n。所以必須是 q 不等於 1 的情況下,上述公式成立。接下來看無窮無盡的等比數列求和公式,無窮無盡的怎麼辦?如果 0 < q < 1,那和會收斂,因為將許許多多的 q 連乘,所得的積是不斷變小的並趨向於 0。分子中的減數將會非常非常的小,以至於接近甚至等於0,捨去。分母則不考慮,就是下面的算式了。如果 q > 1,那根本不存在公式!因為 q 的若干次方將會非常非常非常大,就不會有解了。




下面是比較常用的一個無窮等比數列求和公式:





相關焦點

  • 高中數學等比數列求和公式拓展小技巧
    高中數學必修5----等比數列的求和公式拓展,等比數列求和公式原型是這樣的【點撥】等比數列的求和公式可以理解為指數函數的係數和常數項互為相反數
  • 高二數學 | 圖說等比數列求和公式
    那麼,很開心,總結一下規律就會發現,此數列的前n項等於1減去最後一項即可,於是很漂亮滴得出:那麼,問題來了,其他的等比數列也是如此嗎,當然不一定,比如同樣以1為首項,2為公比的等比數列求和就不盡相同呢,那麼該如何找到通呢,且讓我們回歸到等比數列的實質,也就是它的最基本形式上去。
  • 帶你一起探索數學世界,等差數列和等比數列的,求和運算方法分享
    在數學運算中,等差數列和等比數列的計算是最容易被搞混的,今天我來幫大家解決這個難題:分享一個快速進行等差數列和等比數列的求和計算的小妙招。一起來看一下吧。如何計算1+4+7+10+…+31+34——等差數列求和按一定次序排成一列的數被稱為數列。其中最具代表性的為等差數列。像這樣,相鄰兩項之差相等的數列即為等差數列。
  • 等比數列求和公式的推導(二)
    研究數列過程中的幾何思維>我們知道數列是一種特殊的函數,但是未嘗不能從幾何的角度來研究數列今天,我們來看幾個古代數學家用幾何思維研究數列的例子:數學史上,古希臘數學家畢達哥拉斯(約公元前570年~約公元前500年)最早把正整數和幾何圖形聯繫在一起。畢達哥拉斯學派的數學家經常在沙灘上用小石子表示數,又按小石子所能排列的形狀,把正整數與正三角形、正方形等圖形聯繫起來,將數分為三角形數,正方形數等。這樣一來,抽象的正整數就有了生動的形象,尋找它們之間的規律也就容易多了。
  • 高考數學必考:等差等比數列
    數列是高中數學的重要內容之一,也是高考的必考考點。等差等比數列作為兩種很特殊的數列,歷年來一直都是高考考查的熱點內容。所以掌握數列對同學們來說非常重要,那麼如何快速掌握數列的相關知識,並且能夠靈活運用呢?
  • 吳國平:高考數學必考難點-數列求和的幾種方法
    數列問題一直是高考數學的重難點,深受出卷老師的青睞,可以說是每年高考數學必考的考點之一。雖然大家都知道高考數學數列的重要性,但很多同學對於這類問題,一直無從下手。數列問題考查範圍比較廣泛,如數列的概念與簡單表示法、數列的綜合應用、數列求和等等,今天我們就來講數列求和的解題技巧。
  • 吳國平:2018年高考數學準備戰,衝刺數列求和問題
    從歷年高考數學考查數列內容來看,考查的知識點幾乎包括數列的所有概念和性質;高考題型一般客觀題、解答題都會出現,而客觀題較為簡單,解答題常以難度較大的綜合題出現,甚至是壓軸題的形式。數列求和作為數列最核心內容之一,今天,我們就一起來簡單了解在高考數學中如何考查數列求和。
  • 初中數學公式:等比數列公式
    中考網整理了關於初中數學公式:等比數列公式,希望對同學們有所幫助,僅供參考。   如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。
  • 日常生活中的數學建模 01:等差數列和等比數列
    本文為 [遇見數學] 特約作者 朱浩楠 老師所著本系列著力於挖掘適合在高中各知識單元日常教學中使用的材料,以配合新課標的落實。本講材料如下:1. 城市中交通路線的平均長度:等差數列與堆壘求和;2.估計商品的價位:等比中項與幾何平均;3. 住院病人給藥時間表的設計:等比數列求和與極限控制法。▌1. 城市中交通路線的平均長度:等差數列與堆壘求和假設我們處在這樣一個城市裡:它的道路呈現為一個 n × m (n 行, m 列) 的方形網絡,網絡中的每個節點為一個公交站點,相鄰站點的間距為 L 。現在的問題是:從該城市中一個站點到另一個站點的平均長度為多少?
  • 【教學研究】等比數列求和公式可以這樣生成
    編者的話:       江蘇省特級教師,蘇州市吳江盛澤中學孫四周老師致力於「現象教學進堂」的嘗試,企望用現象教學的視角給高中數學的主要內容寫齊新的教學案
  • 等差數列與等比數列判定,利用數列基本性質,高考重點考題
    數列做為我們高中數學一塊非常重要的內容,並且數列的內容常常是利用各種公式的變換來求解數列的得數或是判定數列的性質,數列的考察往往比較的綜合,並且也有一定的難度,數列常常還可以作為載體,與函數解析式結合在一起進行考察,所以這也成了我們高考考題中的大熱題目,因為通過一道題便可以考察很多的數學知識點
  • 等比數列求和公式,錯位相減法在小學奧數裡的應用
    今天說一下等比數列的求和公式和錯位相減法,然後用一道育才少兒班的真題介紹一下它的應用。等比數列其實是高中的知識,但是小學奧數中卻經常涉及到(還有排列組合等等),雖然不是必須掌握的,但是小學階段也可以借鑑它的證明方法。等比數列是指從第二項起,每一項與它的前一項的比值等於同一個常數的一種數列。
  • 小學數列求和計算題中關於等比數列相關知識及公式運用講解
    等比數列定義:如果一個數列從第二項起,每一項與它的前一項的比都等於一個常數(不為0),那麼,這個數列就叫做等比數列。這個常數叫做等比數列的公比。通過觀察,會發現這個數列的後一項比上前一項都是2。2÷1=2;4÷2=2;8÷4=2;……1024÷512=2。所以這個題目就是典型的等比數列求和題,公比是2。例1中,如果拿筆硬算會十分麻煩,而且容易出錯。
  • 數學高考中必須掌握的幾種數列求和方法講解
    數列求和的常用方法分組求和:把一個數列分成幾個可以直接求和的數列.拆項相消:有時把一個數列的通項公式分成兩項差的形式,相加過程消去中間項,只剩有限項再求和.錯位相減:適用於一個等差數列和一個等比數列對應項相乘構成的數列求和.倒序相加:例如,等差數列前n項和公式的推導.
  • 2021初中八年級數學公式:等比數列公式
    中考網整理了關於2021初中八年級數學公式:等比數列公式,希望對同學們有所幫助,僅供參考。   如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。
  • 高考數學每日答疑12:數列SA法+構造新數列+數列求和
    SA法;2.SA法的兩個步驟,即n=1時,和n≥2兩種情況,計算過程中,要注意數列的通用性質,和由已知條件計算的部分;3.使用SA法的過程中,要有兩個驗證,如若不然,這樣很容易出錯;構造新數列根據題意構造新數列,若不構造新數列
  • 吳國平:學會運用數學思想攻克等比數列相關知識內容
    昨天我們講了等差數列及其前n項和的相關知識內容,那麼今天我們就繼續講解數列另一塊重要知識內容,也就是等比數列及其前n項的和。等比數列可以說是數列的核心內容,自然也是高考必考的知識點之一。在高考數學中,跟等比數列相關的主要考點有:等比數列的基本運算與通項公式;等比數列的性質;等比數列的前n項和;等比數列的綜合應用等等。
  • 等比數列前n項和性質你能寫出多少?
    一、前言等比數列的求和公式之前已經講過了,如果沒有看過的讀者可以翻看一下之前發布的文章,現在需要明白等比數列的性質有哪些?但是在討論性質以前,要明白等比數列怎麼求?二、等比數列前n項和求等比數列的前n項和的過程中體現了兩種高中數學的思想:1)方程思想等比數列求和公式中有一個知三求二問題,這就是方程思想的體現。2)分類討論的思想在進行等比數列求和的過程中,由於等比數列的q是否為1,嚴重影響了等比數列求和的公式選取,這就用到了分類討論思想。
  • 等比數例求和數學公式在磁共振中的應用
    先來看看下圖中藍色部分,今天要做的就是這個:圖片來自:梯度回波之磁化準備擾相梯度回波(三)等比數列求和
  • 等比數列解題技巧—基礎知識篇
    今天開始,逐步和大家分享等比數列的解題技巧。一、等比數列的有關概念1、等比數列的定義:一般地,如果一個數列從第二項起,每一項與它的前一項的比都等於一個常數(不為0),那麼這個數列就叫做等比數列,這個常數叫做等比數列的公比,公比通常用q來表示。定義可以用公式表達為:a(n+1)/an=q(式中n為正整數,q為常數)。