高考數學每日答疑12:數列SA法+構造新數列+數列求和

2020-12-04 曉月談車

今天解答高三同學所提問題

數列SA法

1.SA法在什麼情況下使用,當已知前n項和求通項公式時,我們採用SA法;

2.SA法的兩個步驟,即n=1時,和n≥2兩種情況,計算過程中,要注意數列的通用性質,和由已知條件計算的部分;

3.使用SA法的過程中,要有兩個驗證,如若不然,這樣很容易出錯;

構造新數列

根據題意構造新數列,若不構造新數列,同學們容易誤解式子的意圖,猶如本題的求和。

數列求和方法

1.公式法:用於求等差數列和等比數列的前n項和;

2.裂項相消法:用於分式求和;

3.錯位相減法:用於求等差數列×等比數列的和;

2.分組求和:用於多種形式相加減。

本題解答過程

首先利用SA法求出通項公式,再構造新數列,根據新數列的通項公式,選擇相適應的求和方法。

總結

1.SA法在什麼情況下使用,當已知前n項和求通項公式時,我們採用SA法;

2.SA法的兩個步驟,即n=1時,和n≥2兩種情況,計算過程中,要注意數列的通用性質,和由已知條件計算的部分;

3.使用SA法的過程中,要有兩個驗證,如若不然,這樣很容易出錯;

4.公式法:用於求等差數列和等比數列的前n項和;

5.裂項相消法:用於分式求和;

6.錯位相減法:用於求等差數列×等比數列的和;

7.分組求和:用於多種形式相加減。

提升訓練題

方法不止一種,歡迎同學們暢所欲言!

如有不解之題,可以公眾號留言,或給宇哥QQ(1412721151)留言!

相關焦點

  • 吳國平:高考數學必考難點-數列求和的幾種方法
    數列問題一直是高考數學的重難點,深受出卷老師的青睞,可以說是每年高考數學必考的考點之一。雖然大家都知道高考數學數列的重要性,但很多同學對於這類問題,一直無從下手。數列問題考查範圍比較廣泛,如數列的概念與簡單表示法、數列的綜合應用、數列求和等等,今天我們就來講數列求和的解題技巧。
  • 吳國平:2018年高考數學準備戰,衝刺數列求和問題
    從2017年高考數學及歷年試題分布來看,數列求和問題一直高考數學的熱點和重點。這對於參加2018年高考的考生來說,是一個很好的啟發,可以提早準備,為高考打下一個紮實基礎。數列作為高中數學的重要學習內容之一,又是學習高等數學的基礎,它是初等數學與高等數學的一個重要銜接點。高考對數列的考查比較全面,可以說每年都不會遺漏。
  • 數學高考中必須掌握的幾種數列求和方法講解
    數列求和的常用方法分組求和:把一個數列分成幾個可以直接求和的數列.拆項相消:有時把一個數列的通項公式分成兩項差的形式,相加過程消去中間項,只剩有限項再求和.錯位相減:適用於一個等差數列和一個等比數列對應項相乘構成的數列求和.倒序相加:例如,等差數列前n項和公式的推導.
  • 高考數學必考:等差等比數列
    數列是高中數學的重要內容之一,也是高考的必考考點。等差等比數列作為兩種很特殊的數列,歷年來一直都是高考考查的熱點內容。所以掌握數列對同學們來說非常重要,那麼如何快速掌握數列的相關知識,並且能夠靈活運用呢?
  • 高考數學數列大題考法與熱點題型全面總結,高二高三請收藏
    高考數學命題動向:從近五年高考試題分析來看,等差、等比數列是重要的數列類型,高考考查的主要知識點有:等差、等比數列的概念、性質、前n項和公式.由於數列的滲透力很強,它和函數、方程、向量、三角形、不等式等知識相互聯繫,優化組合,無形中加大了綜合的力度
  • 高中數學等比數列求和公式拓展小技巧
    高中數學必修5----等比數列的求和公式拓展,等比數列求和公式原型是這樣的【點撥】等比數列的求和公式可以理解為指數函數的係數和常數項互為相反數
  • 高考數學:數列的通項公式和求和題的命題規律和解題技巧!
    數列的通項與求和是歷年高考命題的重點與熱點,試題較為綜合,主要有以下命題角度:(1)數列的前n項和Sn與項an之間的關係的應用;(2)簡單的等差數列、等比數列求和問題;(3)綜合性的數列求和,主要涉及裂項相消法、錯位相減法、分組求和法的應用;(4)數列的綜合問題,與函數、不等式、三角以及數學文化等知識相結合,綜合考查考生對數列知識的掌握程度與應用能力
  • 等差數列與等比數列判定,利用數列基本性質,高考重點考題
    數列做為我們高中數學一塊非常重要的內容,並且數列的內容常常是利用各種公式的變換來求解數列的得數或是判定數列的性質,數列的考察往往比較的綜合,並且也有一定的難度,數列常常還可以作為載體,與函數解析式結合在一起進行考察,所以這也成了我們高考考題中的大熱題目,因為通過一道題便可以考察很多的數學知識點
  • 從一道高考數列題探討數列前n項和求法
    有時間就看一道高考數列題吧中,我們通過一道高考數學模擬題討論了數列通項公式的一般求解方法,昨天晚上,這樣,我們就得知了數列 {a} 是公差為1的等差數列,我們求出 a 就可以了,就可以得到通項公式 a ,a 我們直接帶入題目已知的關係式就能求得,過程如下所示 :該題第一小問很簡單,關鍵是第二小問,第二小問通過數列 {a} 構造出數列 {b} ,要求我們計算數列的前 n 項和 T ,首先我們將計算得到的 a 代進去可以得到 b ,如下所示:
  • 高中數學公式大全:數列求和及數列的簡單應用
    高中數學公式大全:數列求和及數列的簡單應用 2019-02-15 15:36 來源:新東方網編輯整理 作者:
  • 高考題型之數列問題總結歸納
    大家好,我是試題小講,今天為大家總結一下關於高考數學題型之一的數列問題,考查數列通常都是在大題中出現。總結一下主要考查題型。高中階段就學過等差數列和等比數列。先來總結一下他們的通項公式和求和公式及性質。
  • 衝刺2018年高考數學,典型例題分析67:數列求和相關綜合題型 - 吳國...
    (1)求數列{an}的通項公式;(2)若{bn}為等差數列,對任意的n∈N*,都有Sn>Tn.證明:an>bn;(3)若{bn}為等比數列,b1=a1,b2=a2,求滿足(an+2Tn)/(bn+2Sn)=ak(k∈N*)的n值.
  • 多項式數列
    函數f(x)=3x+4是個多項式函數(一次函數),則an=3n+4是個多項式數列,其實它是個等差數列。因此,我們有第一個顯而易見的結論:等差數列是一個多項式數列。當然,多項式數列的範圍比等差數列大一些。
  • 決戰高考數學黃金三十天:第26天數列求和方法技巧總結
    求數列的前n項和的主要方法有:1.直接公式法:對於等差數列或等比數列可用公式法.2.裂項相消法:將數列的每一項分解為兩項的差,逐一累加相消.3.錯位相減法:若{an}為等差數列,{bn}為等比數列,則對於數列{anbn}的前n項和可用錯位相減法4.倒序相加法:如等差數列前n項和公式的推導用的就是該法5.分組分解法:將原數列分解成可用公式法求和的若干個數列下面是常用的裂項公式,記住這些常用的公式,可以提高解題的速度。
  • 一分鐘數學——等比數列求和
    等比數列求和什麼是等比數列?
  • 小學數列求和計算題中關於等比數列相關知識及公式運用講解
    等比數列定義:如果一個數列從第二項起,每一項與它的前一項的比都等於一個常數(不為0),那麼,這個數列就叫做等比數列。這個常數叫做等比數列的公比。通過觀察,會發現這個數列的後一項比上前一項都是2。2÷1=2;4÷2=2;8÷4=2;……1024÷512=2。所以這個題目就是典型的等比數列求和題,公比是2。例1中,如果拿筆硬算會十分麻煩,而且容易出錯。
  • 32、高考大題數列專題
    題型一 等差、等比數列的綜合問題解題心得1.對於等差、等比數列,求其通項及求前n項的和時,只需利用等差數列或等比數列的通項公式及求和公式求解即可.2.有些數列可以通過變形、整理,把它轉化為等差數列或等比數列,進而利用等差數列或等比數列的通項公式或求和公式解決問題.
  • 作為高考數學的熱點,數列有關的綜合題,值得考生關注
    在高考數學中,我們解決等差數列與等比數列有關的綜合問題,關鍵是在於要理清兩個數列的關係。如果同一數列中部分項成等差數列,部分項成等比數列,要把成等差數列或等比數列的項抽出來單獨研究;如果兩個數列通過運算綜合在一起,要從分析運算入手,把兩個數列分割開,弄清兩個數列各自的特徵,再進行求解。
  • 小學升學數學公式大全:數列求和
    小學升學數學公式大全:數列求和   等差數列:   在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列。   基本概念:   首項:等差數列的第一個數,一般用a1表示;   項數:等差數列的所有數的個數,一般用n表示;   公差:數列中任意相鄰兩個數的差,一般用d表示;   通項:表示數列中每一個數的公式,一般用an表示;   數列的和:這一數列全部數字的和,一般用Sn表示.
  • 帶你一起探索數學世界,等差數列和等比數列的,求和運算方法分享
    在數學運算中,等差數列和等比數列的計算是最容易被搞混的,今天我來幫大家解決這個難題:分享一個快速進行等差數列和等比數列的求和計算的小妙招。一起來看一下吧。如何計算1+4+7+10+…+31+34——等差數列求和按一定次序排成一列的數被稱為數列。其中最具代表性的為等差數列。像這樣,相鄰兩項之差相等的數列即為等差數列。