勾股定理與線段最值問題題型解讀

2021-01-09 米粉老師說數學

【知識梳理】

一.平面圖形中線段和差問題最值的「將軍飲馬問題」

1.基礎題型:兩條線段出現三個點:兩個定點+一個動點

解題方法:先作圖再計算解答

作圖思路:任選兩動點中的一個定點作對稱點,動點所在的線段為對稱軸,連接對稱點與另一個定點,所連的線段即是要求的最小值,所連線段與對稱軸的交點為動點所在的位置。

2.兩條線段出現三個點:一個定點+兩個動點

作圖思路:作定點的對稱點,一般兩種處理方法:①能作兩次對稱的作兩次對稱,再連接兩個對稱點,連接線段即是最小值,與兩條對稱軸的交點分別是兩動點位置;②只能做一次對稱的作一次對稱,再作對稱點到另一動點所在線段的垂線段,該垂線段即為最小值,垂線段與對稱軸的交點即為一個動點所在位置,垂足為另一動點所在位置。

二.空間立體圖形中路線最短問題:

1.解題思路:圖形展開+勾股定理

2.長方體中的路線最短問題

①若是解答題,需分三種情況一一求解,最後比較確定最短距離;

②若是填選題,解題技巧是:直接用公式求解,

3.注意立體圖形中的路線的起點、終點在展開圖中的位置;

三.單獨一條線段的最短問題

解題方法:作垂線(點到直線的各連線中,垂線段最短)

【典型例題】

【思路及解題過程】

歡迎點評留言,請繼續關注百家號「米粉老師說數學」,將為你呈上更豐盛的數學大餐,謝謝!

相關焦點

  • 中考難點,線段型最值問題的處理三利器
    線段型最值問題是歷年中考命題的熱點,常在壓軸題中出現,由於此類問題都是變化過程中,圖形大小或形狀是隨動點的運動而變化的,學生很難把握變化圖形的形狀及其大小,故大多數學生遇到最值是「談虎色變」不敢下手或無從下手,本文擬通過實例分析,一起探討線段型最值問題的三種解題策略。
  • 運用轉化思維,構造「圓」模型,求解線段最值問題
    歡迎來到百家號「米粉老師說數學」,幾何最值問題,一直都是初中幾何題中難度最大的一類題型,利用數學轉化思維,構造各種數學模型,是解決此類題最核心的解題的策略,構造相應的數學模型既有代數方法,也有幾何方法。
  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    本專欄包括人教版九年級上冊第24章圓(第1-35課)及中考數學幾何動點最值壓軸題型(第36-79課)含隱形輔助圓、瓜豆原理、胡不歸問題、阿氏圓模型、費馬點模型,由於將軍飲馬問題與三角形關係密切,故放在了三角形專欄進行了講解。
  • 中考熱點題型|圓中最值,有章可循
    近年來以圓為載體,通過點的運動或圓本身的運動來考查與圓有關的最值得題型頻頻出現,解決這類問題的關鍵是找出確定最值成立的條件,大家應學會化未知為已知,與已知知識點相聯繫,尋覓引起變化的主題原因,架起思維的橋梁,實現有效的轉化,從而找到突破口求解。
  • 中考難點,構造出隱圓,絕殺點圓最值問題
    近年來,幾何中因動點而產生線段最值問題廣泛出現,成為中考的熱點和難點。此類題型一般都會以選擇或填空的壓軸形式出現,其中又以構造「隱形圓」來解決最值問題,條件隱藏較深,學生難以把握哪些題型需要構造「隱形圓」處理,巧妙地引入輔助圓,轉化為利用圓的幾何性質來解決,往往會使問題思路豁然開朗,運算簡單便捷,過程清晰明了,引人入勝。
  • 初三數學:這個線段和最值看似難求,學會利用三角函數值輕鬆求解
    利用三角函數值求解線段和的最值是數學中考的常考題型,本文就例題詳細解析這類題型的解題方法,希望能給初三學生的數學複習帶來幫助。例題如圖,在△ABC中,AB=AC=10,tanA=2,BE⊥AC於點E,D是線段BE上的一個動點,求CD+√5/5BD的最小值。
  • 2021年中考專題複習,二次函數線段、周長最值問題,四種處理思路
    前節提要:2020年中考數學專題複習,幾何最值之將軍飲馬、胡不歸、隱形圓2020年中考專題複習,旋轉之半角模型、手拉手模型、一線三角模型2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法2020年中考數學專題複習,平行四邊形存在性問題
  • 中考難點:說愛動點幾何最值問題不容易,細說之解題思維模型
    最值問題是初中數學的重要內容,也是一類綜合性較強的問題,它貫穿初中數學的始終,是中考的熱點問題。它主要考察學生對平時所學的內容的綜合運用,尤其動點幾何最值問題是中考熱點壓軸問題。幾何動點最值類題型之所以能成為中考數學壓軸題的常考題型,除了題型複雜、知識點多外,更主要是能很好考查一個人運用數學思想方法的能力,如常用的數學思想方法有方程思想、數學建模思想、函數思想、轉化思想、分類討論法、數形結合法等等。幾何動點問題主要是以幾何知識為載體,突出了對幾何基本圖形掌握情況的考查、數學邏輯思維能力和數學表達能力的考查。
  • 從旋轉和軸對稱兩個方向突破線段和最值問題
    從旋轉和軸對稱兩個方向突破線段和最值問題幾條線段和的最值問題,一直作為武漢地區數學題的特色,思維有難度,是選擇題或填空題的壓軸戲。而解決此類問題的基礎,不外乎兩條定理:兩點之間線段最短,垂線段最短。那麼無論哪種方法,最終都要將線段和轉換成一條線段或一條垂線段。
  • 透視「將軍飲馬問題」,詳細解讀線段及線段和的最小值題型
    歡迎來到百家號「米粉老師說數學」,「將軍飲馬問題」是初中壓軸題中最常見的一類題型,它的起源就來自於初一下軸對稱現象、垂直平分線的應用,這之後逐漸融合其它知識,如勾股定理、圓、相似、函數等,題型變化就越多,在初一下《生活中的軸對稱》這章,是最基礎的「將軍飲馬問題」,重在對「化曲為直」這個解題思路的理解上,便再簡單,「廋死的駱駝比馬大」,它往往是初一下期末考的壓軸題。
  • 一次函數線段最值,將軍飲馬,如何找到最值點是關鍵
    這一類題其實和前面學習線段時候講的將軍飲馬問題是一樣的解決方法,只不過是加入了一次函數的知識,要利用兩直線聯立去解出最值點的坐標。>下面我們看到例題:例題第一問,通過翻折知道BA=BD得到BA=10,然後在直角三角形AOB中,用勾股定理求出
  • 初三數學:求線段長的最值有點難,原來要這樣判斷動點的運動軌跡
    利用幾何圖形的性質求線段長的最值是數學中考的常考題型,本文就例題詳細解析這類題型的解題方法,希望能給初三學生的數學複習帶來幫助。例題如圖,在矩形ABCD中,AB=4,AD=2,E為AB的中點,F為EC上一動點,P為DF的中點,連接PB,求PB的最小值。
  • 一道題幫你分析中考數學——幾何動點中的最值問題
    最值問題,一直都是中考數學的熱點題型。無論是幾何最值還是函數最值,全國各地的考題均有涉獵。而部分省市區更是頻繁到年年考,年年讓一批考生痛哭流淚!正所謂「年年歲歲花相似,歲歲年年人不同!」最值問題也是變著花樣出題,今年與二次函數結合,明年又與一次函數結合。
  • 中考數學專題系列三十四:勾股定理在摺疊問題中的應用
    中考數學專題系列三十四:勾股定理在摺疊問題中的應用作者 卜凡初中數學中,有關摺疊的問題也是相對比較難的問題,主要涉及求角的度數、求線段的長度、求周長、面積等,其中求線段的長度的問題必然用到勾股定理,而這也正是孩子們感覺到困難的地方,不知道藉助哪個直角三角形運用勾股定理解決。下面藉助例題和大家介紹這類題型的解題思路和方法。
  • 八年級數學勾股定理的應用學生要學好,需把這七個題型掌握牢
    八年級數學下冊中的勾股定理,是初中數學中的一個重要定理,它體現了「數」與「形」的完美結合。應用勾股定理,可解決與直角三角形有關的許多實際問題。這部分知識學生是否學好,就要看這七個題型學生是否掌握牢。一、利用勾股定理在數軸上表示無理數。
  • 活用求解最值問題的利器,再難的題目都迎刃而解
    中考數學試題中「最值」的題型出現的頻率比較高,對學生來說有一定的難度,課本中沒有作系統介紹,而且有很強的探究性,往往綜合了幾何基本變換、圖形的軌跡等方面的知識,雖然中考中的最值問題往往綜合了幾何變換、函數等方面的知識,具有一定的難度.通過研究發現,這些問題儘管形式多樣、背景複雜、變化不斷,但都可以通過幾何變換這一利器去轉化為常見的基本問題.
  • 八年級上:中線定理與廣勾股定理
    前兩期內容我們分別講了勾股定理的證明,以及廣勾股定理的證明,不知道同學們是否還有印象呢?已經忘記了的同學們趕緊戳戳最下方的連結。
  • 利用三角形三邊關係解決線段最值問題
    在幾何最值問題中,經常需要利用三角形的三邊關係來解答:三角形的三邊關係:任意兩邊之和大於第三邊三角形基本模型講解基本模型講解我們在利用三角形三邊關係來解答最值問題時分析:需要求求動點D到定點O的最大值,在解決這樣的問題中,一般需要先去尋找和分析變化的量和不變的量,找到兩條長度固定的線段並且與變化的線OD構造出三角形。
  • 中考數學:最值問題有多難?網友:題目剛看完,我就決定放棄了
    從全國各地各年份的中考數學真題中不難發現,最值問題無疑是最熱門的考點。雖說各地的考試難度不一樣,最值問題的難點也不一樣。有些地區簡單到只考「將軍飲馬」的基礎模型;而有些省市就不一樣了,「胡不歸」、「阿氏圓」、「費馬點」等大部分學生或者老師連聽都沒聽說過的模型!而「胡不歸」、「阿氏圓」這些模型究竟有多難?我們不妨一起來看看下面這兩道例題!
  • 中考數學必備技能,構造直角三角形,使用勾股定理解題
    在中考幾何題中,經常使用勾股定理來求線段的長,特別是在綜合題中,有時需要自己構造直角三角形,對於這樣的題,做輔助線是個難點,要學會具體問題具體分析,下面這道題是2018年福建省的一道中考填空題,咱們一起來分析:分析:使用三角尺組合成幾何圖形,是中考的熱點題型,對於本題,求CD的長