利用三角形三邊關係解決線段最值問題

2020-12-06 胡老師中小學數學

在幾何最值問題中,經常需要利用三角形的三邊關係來解答:

三角形的三邊關係:

任意兩邊之和大於第三邊任意兩邊之差小於第三邊

三角形

基本模型講解

基本模型講解

我們在利用三角形三邊關係來解答最值問題時,構造出合適的三角形是解題的關鍵。

構造出來的這個三角形是有條件的:「構造出的這個三角形有兩條邊為定值,另外一邊為需要求的那條邊」。

典型例題:

如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為

______.

分析:需要求求動點D到定點O的最大值,在解決這樣的問題中,一般需要先去尋找和分析變化的量和不變的量,找到兩條長度固定的線段並且與變化的線OD構造出三角形。

矩形ABCD的形狀和大小不變,邊長和對角線的長度都保持不變,但隨著點A和B的移動,點C和D也在不斷移動。

點O是坐標原點,位置不變,那麼三角形AOB就固定為直角三角形,這個直角三角形中兩直角邊OA和OB 的長度都在變化,但斜邊AB的長度不變,斜邊長度不變,想到與之相關的一個定理:

直角三角形斜邊上的中線等於斜邊的一半。

解答過程:

解答過程

對應練習

這種方法和模型你學會了嗎?來練習幾道題。

動點最值問題一直是中考數學中的難題,解題的關鍵在於化動為靜,將問題進行合理轉化,利用與之相關的知識點進行分析和解答,在運用三角形三邊關係解決最值問題中,解題的關鍵在於構造三角形,一般情況下,需要找出兩條固定線段,與需要求的線段構造三角形,然後利用三角形三邊關係進行分析和解答即可。

相關焦點

  • 中考熱點,三角形三邊關係的兩個最值模型精彩應用
    下面結合例題說明三角形三邊關係的兩個最值模型精彩應用。模型1問題:在直線l上找一點P,使得| PA-PB |的值最大解析:連接AB,並延長與1交點即為點P.解析:如圖,取AB的中點E,連接OD、OE、DE,∵∠MON=90°,AB=2 , ∴OE=AE=1/2AB=1,∵BC=1,四邊形ABCD是矩形,∴ AD=BC=1, ∴DE=√2,根據三角形的三邊關係,OD<OE+DE, 當OD過點
  • 初中三角形三條線段的符號語言表達、易忽略的三邊關係你都中了嗎
    三角形中的三條重要線段三角形的高、中線和角平分線是三角形中三條重要的線段,它們提供了重要的線段或角的關係,為我們以後深入研究三角形的一些特徵起著很大的幫助作用,因此,我們需要從不同的角度弄清這三條線段,具體如下表:三線注意事項:①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;②三角形的角平分線是一條線段,而角的平分線是一條射線
  • 中考難點,線段型最值問題的處理三利器
    線段型最值問題是歷年中考命題的熱點,常在壓軸題中出現,由於此類問題都是變化過程中,圖形大小或形狀是隨動點的運動而變化的,學生很難把握變化圖形的形狀及其大小,故大多數學生遇到最值是「談虎色變」不敢下手或無從下手,本文擬通過實例分析,一起探討線段型最值問題的三種解題策略。
  • 線段和差最值問題----將軍飲馬模型
    這個問題早在古羅馬時代也有,傳說亞歷山大城有一位精通數學和物理的學者,名叫海倫,一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解的問題:將軍每天從軍營A出發,先到河邊飲馬,然後再去河岸同側的B地開會,應該怎樣走オ能使路程最短?從此,這個被稱為「將軍馬「的問題廣泛流傳。將軍馬問題=軸對稱問題=最短距離問題(軸對稱是工具,最短距離是題眼。
  • 2018中考數學知識點:三角形的三邊關係定理及推論
    下面是《2018中考數學知識點:三角形的三邊關係定理及推論》,僅供參考!   三角形的三邊關係定理及推論:     (1)三角形三邊關係定理:三角形的兩邊之和大於第三邊。     推論:三角形的兩邊之差小於第三邊。
  • 運用轉化思維,構造「圓」模型,求解線段最值問題
    歡迎來到百家號「米粉老師說數學」,幾何最值問題,一直都是初中幾何題中難度最大的一類題型,利用數學轉化思維,構造各種數學模型,是解決此類題最核心的解題的策略,構造相應的數學模型既有代數方法,也有幾何方法。
  • 三角形三邊關係要學好,這些方法和題型一定要掌握牢
    三、三角形三邊關係(理解並掌握,並能運用三邊關係解決問題)。一、三角形及其有關概念。1、三角形:由不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫作三角形。定義說明三角形具有的結構特徵為:①不在同一直線上的三條線段。②三條線段首尾順次連接。2、三角形的邊:組成三角形的三條線段叫三角形的邊。
  • 從旋轉和軸對稱兩個方向突破線段和最值問題
    從旋轉和軸對稱兩個方向突破線段和最值問題幾條線段和的最值問題,一直作為武漢地區數學題的特色,思維有難度,是選擇題或填空題的壓軸戲。而解決此類問題的基礎,不外乎兩條定理:兩點之間線段最短,垂線段最短。那麼無論哪種方法,最終都要將線段和轉換成一條線段或一條垂線段。
  • 2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法
    本節內容主要介紹二次函數中三角形面積最值問題。求三角形常用的方法有:(1)直接法,利用三角形的面積公式求解,此時的三角形是規則三角形,也就是說可以求出三角形的底和高,一般以坐標軸上線段或以與軸平行的線段為底;(2)利用相似三角形,兩個三角形相似,面積比等於相似比的平方;(3)利用同底或等高的三角形面積關係;(4)割補法求三角形的面積,三邊均不在坐標軸上的三角形及不規則多邊形需把圖形分解。
  • 初三數學:這個線段和最值看似難求,學會利用三角函數值輕鬆求解
    利用三角函數值求解線段和的最值是數學中考的常考題型,本文就例題詳細解析這類題型的解題方法,希望能給初三學生的數學複習帶來幫助。例題如圖,在△ABC中,AB=AC=10,tanA=2,BE⊥AC於點E,D是線段BE上的一個動點,求CD+√5/5BD的最小值。
  • 九年級數學,二次函數中三角形周長的最值問題,解題思路很重要
    很多同學學習完「鉛錘法」後,按照解題套路能很快解決二次函數中三角形面積的最值。如果面積最值問題還沒有掌握的話,可以參考:2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法但是,冷不丁的遇到二次函數中三角形周長的最值問題
  • 三種動態三角形關聯「瓜豆原理」產生最值之常規思路與解決方案
    已知「一邊和一角」的動態三角形,搭上關聯圖形後產生從動點軌跡,從而出現幾何最值,如何思考和解決此類問題,下面給出三例相關題目的基本題型,共同來分析一下:「定邊定長對定角動點」《例1》「定角對定邊」動態三角形,角動邊不動,首先尋找確定元素,作三角形外接圓,則其圓心為定點,半經為定長,再尋找與從動點相關聯的基礎三角形,應用「瓜豆原理」確定從動點的軌跡(亦是圓),從而輕鬆解決最值
  • 《三角形三邊關係》教學設計,具體,好操作
    今天跟大家分享一份人教版四年級下冊《三角形三邊關係》的教學設計,本教學思路清晰,具體,好操作,大家可以看看。教學內容:人教版新課標數學四年級下冊P82例3教學目標:1.探究、發現三角形任意兩邊的和大於第三邊,初步理解三角形三邊的關係。
  • 2021年中考專題複習,二次函數線段、周長最值問題,四種處理思路
    前節提要:2020年中考數學專題複習,幾何最值之將軍飲馬、胡不歸、隱形圓2020年中考專題複習,旋轉之半角模型、手拉手模型、一線三角模型2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法2020年中考數學專題複習,平行四邊形存在性問題
  • 中考數學:三角形三邊關係的巧用(下篇)
    今天我們接著講三角形三邊關係的巧用。【解答】解:當腰為5時,根據三角形三邊關係可知此情況成立,周長=5+5+2=12;當腰長為2時,根據三角形三邊關係可知此情況不成立;所以這個三角形的周長是12.故選:B.
  • 中考提分新策略,三大思維模型助力破解四邊形最值難題
    四邊形中的最值問題其實是三角形中最值問題的延伸,這類最值問題涉及到的知識點有五個:應用兩點之間線段最短;應用垂線段最短;應用三角形三邊之間的關係;應用軸對稱、旋轉、平移(初中三大幾何變化);構造軌跡圓求最值(包括定角模型、定線模型、隱含圓模型),舉例說明如下:模型1 將軍飲馬模型1.(2019永安市一模)如圖,在平面直角坐標系中,矩形ABCD的頂點
  • 中考幾何最值問題求解策略新認識,一篇全攻破
    幾何題多變的問法,一直是中考題中難住我們的題目,當「幾何」遇上「最值」,會碰撞出怎樣的火花呢?關於幾何最值問題研究的老師很多,本人以前也有文章論述,本文在此基礎上再次進行歸納總結,把各種知識、方法、思想、策略進行融合提煉、追本溯源、認祖歸宗,以使解決此類問題時更加簡單明晰。
  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    本專欄包括人教版九年級上冊第24章圓(第1-35課)及中考數學幾何動點最值壓軸題型(第36-79課)含隱形輔助圓、瓜豆原理、胡不歸問題、阿氏圓模型、費馬點模型,由於將軍飲馬問題與三角形關係密切,故放在了三角形專欄進行了講解。
  • 中考數學專題之線段最值及路徑長問題
    線段(和)差最值問題的知識背景1.線段公理——兩點之間,線段最短;2.對稱的性質——關於一條直線對稱的兩個圖形全等、對稱軸是兩個對稱圖形對應點連線的垂直平分線;3.三角形兩邊之和大於第三邊;4.三角形兩邊之差小於第三邊;5.垂直線段最短;6.過圓內一點,最長的弦為直徑,最短的弦為垂直於直徑的弦。
  • 動點最值:3種思路求AE的最小值,等腰直角三角形輔助線構造方法
    動點最值問題:本地區中考最值考的比較基礎,很多最值題型都是初次接觸,整理也是我學習的過程,對自己也是個提升。最值在很多地區是中考的重難點,本題是直角三角形中構造等腰直角三角形,求線段最小值,一共整理3種解法,分享給大家。如果有好的方法歡迎大家留言,一個人的思路是有限的,大家的智慧是無窮的。