一次函數線段最值,將軍飲馬,如何找到最值點是關鍵

2020-11-24 白老談數學

這一類題其實和前面學習線段時候講的將軍飲馬問題是一樣的解決方法,只不過是加入了一次函數的知識,要利用兩直線聯立去解出最值點的坐標。

下面我們看到例題:

例題

第一問,通過翻折知道BA=BD得到BA=10,然後在直角三角形AOB中,用勾股定理求出OA的長,即知道了A點的坐標,通過A、B兩點待定係數法可以求出直線AB解析式

第二問,要三角形PED周長最小,其實就求PD+PE的最小值,因為DE是定值,這就轉化成了典型的將軍飲馬問題,怎麼找到這個P點呢,就是作點D關於直線BC的對稱點,然後連這個對稱點與點E,連線與BC的交點即是要求的P點。那麼如何求P點的坐標呢,就是利用兩直線聯立去解,由題目已知的翻折知道點D關於直線BC的對稱點就是點A,這樣AE的解析式就可以求出來了,然後就是求直線BC的解析式,B點坐標知道,就是求點C的坐標,可以設OC長為x,則AC=DC=8-x,在直角三角形DOC中,由勾股定理可以求出C點坐標,進而求出直線BC的解析式,聯立直線AE和直線BC就可以求出P點坐標了。(這裡要注意,在找P點的時候,一定是過定點作動點P所在直線BC的對稱點)

第三問,重點要注意的是點H是坐標軸上的點,算的時候不要漏解

大家可以自己做下練習:

練習

#初中數學#

相關焦點

  • 線段和差最值問題----將軍飲馬模型
    這個問題早在古羅馬時代也有,傳說亞歷山大城有一位精通數學和物理的學者,名叫海倫,一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解的問題:將軍每天從軍營A出發,先到河邊飲馬,然後再去河岸同側的B地開會,應該怎樣走オ能使路程最短?從此,這個被稱為「將軍馬「的問題廣泛流傳。將軍馬問題=軸對稱問題=最短距離問題(軸對稱是工具,最短距離是題眼。
  • 2021年中考專題複習,二次函數線段、周長最值問題,四種處理思路
    前節提要:2020年中考數學專題複習,幾何最值之將軍飲馬、胡不歸、隱形圓2020年中考專題複習,旋轉之半角模型、手拉手模型、一線三角模型2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法2020年中考數學專題複習,平行四邊形存在性問題
  • 初中數學將軍飲馬引發的動點到定點距離最值問題詳解
    最近有網友問我關於初中數學動點求最值的方法問題。下面我針對這方面的問題做了一個小小的總結。希望對需要的朋友有所幫助。那麼是關於什麼樣的動點求最值的問題呢?我想各位朋友都曾遇到過著名的「將軍飲馬」問題。今天的這個話題就是針對這個問題進行一個匯總整理。下面我們再來重新回顧一下這個著名的「將軍飲馬」問題。
  • 九年級數學,二次函數中三角形周長的最值問題,解題思路很重要
    ,卻懵了,不知道如何下手,解決這類問題解題思路很重要。1.將軍飲馬模型例題1:如圖,直線y=-x+3與x軸、y軸分別交於點B,點C,經過B,C兩點的拋物線y=x^2+bx+c與x軸的另一個交點為A,頂點為P,點M為拋物線的對稱軸上的一個動點.
  • 中考難點,線段型最值問題的處理三利器
    線段型最值問題是歷年中考命題的熱點,常在壓軸題中出現,由於此類問題都是變化過程中,圖形大小或形狀是隨動點的運動而變化的,學生很難把握變化圖形的形狀及其大小,故大多數學生遇到最值是「談虎色變」不敢下手或無從下手,本文擬通過實例分析,一起探討線段型最值問題的三種解題策略。
  • 運用轉化思維,構造「圓」模型,求解線段最值問題
    如代數方法,往往是把題中的兩變量設定為參數,建立二次函數模型,轉化成二次函數的最值問題來解決;又如幾何方法,可以把它轉化成線段和差最值的「將軍飲馬問題」,也可以轉化成「垂線段最值問題」,到了初三學了圓知識之後,又多了一種轉化思維:構造圓模型,從圓的角度解決線段最值問題,今天我們結合實例來說一說,如何構造圓模型,利用圓的相關知識及解題思路,來解決線段的最值問題。
  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    第39課中考數學幾何動點問題:藉助中垂線的性質利用圓的定義構造輔助圓解決點到直線的距離最大問題.第40課中考數學壓軸題:藉助將軍飲馬和隱形圓輔助圓研究雙動點線段和最值問題.第41課中考數學幾何動點:藉助直徑對直角來構造輔助圓,解決動線段最小值問題.第42課湖北武漢中考數學幾何動點壓軸題:藉助三角形全等和直徑對直角構造輔助圓研究線段最小值.
  • 勾股定理與線段最值問題題型解讀
    【知識梳理】一.平面圖形中線段和差問題最值的「將軍飲馬問題」1.基礎題型:兩條線段出現三個點:兩個定點+一個動點解題方法:先作圖再計算解答作圖思路:任選兩動點中的一個定點作對稱點,動點所在的線段為對稱軸,連接對稱點與另一個定點,所連的線段即是要求的最小值
  • 一道題幫你分析中考數學——幾何動點中的最值問題
    最值問題,一直都是中考數學的熱點題型。無論是幾何最值還是函數最值,全國各地的考題均有涉獵。而部分省市區更是頻繁到年年考,年年讓一批考生痛哭流淚!正所謂「年年歲歲花相似,歲歲年年人不同!」最值問題也是變著花樣出題,今年與二次函數結合,明年又與一次函數結合。
  • 吳國平:如何求解中考數學當中,函數最值類問題
    其中二次函數求最值問題,更是慣穿著整個初中數學求最值的問題全部內容。因此,今天我們就一起來講講與二次函數相關的求最值問題,特別是一些典型最值中考壓軸題型,如面積最值問題。典型例題分析2:如圖,拋物線y=﹣x2+bx+c交x軸於點A(﹣3,0)和點B,交y軸於點C(0,3).(1)求拋物線的函數表達式;(2)若點P在拋物線上,且S△AOP=4SBOC,求點P的坐標;(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線於點D,求線段DQ長度的最大值.
  • 中考數學提分必備041-最值問題不用怕,模型秘籍搞定它
    當然數學中考例不會都考簡單題,最短路徑的難題很可能把基礎模型和隱圓,全等或相似構造,胡不歸模型,阿氏圓以及二次函數最值等知識結合起來,那也得需要你先有一定的基礎,然後再去研究,去徵服。問題1:兩點之間,線段最短的應用問題2:兩點一動,典型的將軍飲馬問題,作其中一點的對稱點,然後把另一點與所作對稱點連接,與動點軌跡相交處即要找的點。
  • 中考提分新策略,三大思維模型助力破解四邊形最值難題
    四邊形中的最值問題其實是三角形中最值問題的延伸,這類最值問題涉及到的知識點有五個:應用兩點之間線段最短;應用垂線段最短;應用三角形三邊之間的關係;應用軸對稱、旋轉、平移(初中三大幾何變化);構造軌跡圓求最值(包括定角模型、定線模型、隱含圓模型),舉例說明如下:模型1 將軍飲馬模型1.(2019永安市一模)如圖,在平面直角坐標系中,矩形ABCD的頂點
  • 九年級數學,與自變量有關的二次函數最值問題,圖像法解題更清晰
    在我們印象裡,二次函數有不少最值的專題,比如二次函數與面積最值問題、二次函數實際問題最值問題等等。而本節主要介紹的為二次函數本身的最值問題,只有熟練掌握二次函數本身最值問題,才能更好地解決其它類型的最值問題。
  • 初三數學:這個線段和最值看似難求,學會利用三角函數值輕鬆求解
    利用三角函數值求解線段和的最值是數學中考的常考題型,本文就例題詳細解析這類題型的解題方法,希望能給初三學生的數學複習帶來幫助。例題如圖,在△ABC中,AB=AC=10,tanA=2,BE⊥AC於點E,D是線段BE上的一個動點,求CD+√5/5BD的最小值。
  • 利用三角形三邊關係解決線段最值問題
    ,構造出合適的三角形是解題的關鍵。典型例題:如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為______.
  • 中考數學:最值問題有多難?網友:題目剛看完,我就決定放棄了
    從全國各地各年份的中考數學真題中不難發現,最值問題無疑是最熱門的考點。雖說各地的考試難度不一樣,最值問題的難點也不一樣。有些地區簡單到只考「將軍飲馬」的基礎模型;而有些省市就不一樣了,「胡不歸」、「阿氏圓」、「費馬點」等大部分學生或者老師連聽都沒聽說過的模型!而「胡不歸」、「阿氏圓」這些模型究竟有多難?我們不妨一起來看看下面這兩道例題!
  • 求三角形周長的二次函數最值問題
    構建三角形周長的二次函數最值模型例題:如圖,已知拋物線y=−x2
  • 九年級數學,二次函數中矩形周長、面積最值問題,解題方法不同
    二次函數中矩形周長的最值問題與面積的最值問題,思考方法不一樣。矩形周長的最值問題一般藉助設點法表示出矩形的長和寬,然後利用公式得到周長,一般化簡後為二次函數,然後通過研究二次函數的性質得到最值。-1左側拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交於H點,若M點的橫坐標為x,矩形MNHG的周長為l.
  • 解析幾何,導數,四邊形中的最值問題選題
    |的題目用極坐標方程來解最容易,證明過程很簡單,藉此題目說明一下解析幾何中與線段平方有關的定值問題,可藉助極坐標方程去解,過程如下:第二題的價值在於思路如何去想,求n的最大值,關鍵是去掉其中的函數符號,在給定區間內可求出函數的值域,因此利用單調性放縮可把未知的變量函數值變成確定的函數值即可求出n的取值範圍。
  • 一道中考數學,將軍飲馬問題,竟然用物理知識巧妙解決數學問題
    將軍飲馬問題,在中考數學裡頻頻出現,是熱門考點。會套路的同學,真的是分分鐘解決問題,不明白解題模型,真的是抓破腦袋,也想不出來。一般的將軍飲馬問題,很多同學、老師都已經研究透了。2020黑龍江中考數學第18題,就是一道將軍飲馬問題的創新題,老鹿竟然用物理知識輕鬆解決!先看題目: