中考數學提分必備041-最值問題不用怕,模型秘籍搞定它

2021-01-09 陪你學數學

最值問題是是數學中考的熱點,也是難點,掌握最短路徑的基本模型有利於我們高效準確地解決問題,拿到分數。本文將介紹最短路徑的十二個基本模型,並在文末配以針對練習和中考真題講解。本文也是參照其他老師分享的成果,有需要的同學留言索要即可。

預祝中考必勝

最近多個地區四月和五月份中考模擬試卷裡都出現了最值問題,雖然有些題目比較難,但是你會發現考試裡的題目考查的知識基本都不會超過考綱要求,考查的內容也是我們平時學習的內容,沒有什麼嚇人的新東西出現。只要平時做好學好基本功,考試有可能會遇到原題或者解法基本相同的題目。

當然數學中考例不會都考簡單題,最短路徑的難題很可能把基礎模型和隱圓,全等或相似構造,胡不歸模型,阿氏圓以及二次函數最值等知識結合起來,那也得需要你先有一定的基礎,然後再去研究,去徵服。

中考必勝

下面我們就來介紹最短路徑的12個基本問題,看看你是否都過關了!

問題1:兩點之間,線段最短的應用

問題2:兩點一動,典型的將軍飲馬問題,作其中一點的對稱點,然後把另一點與所作對稱點連接,與動點軌跡相交處即要找的點。

兩定一動最小值

問題3:一定兩動型,最值問題。分別作定點關於兩動點軌跡的對稱點是解決問題的關鍵。

問題

一定兩動型最值

問題4:本質上和問題3沒有差別。下圖所示,左側定點找左側動點軌跡的對稱點,右側定點找右側動點軌跡點的對稱點。

兩頂兩動最小值
造橋選址典型題
兩定點+一動線段

問題6:兩點之間線段最短.AM+MN+BN的最小值為A"B+MN

問題7:原理,點到直線,垂線段最短.PA+AB的最小值為線段P'B的長

問題8:作法:,將點A向右平移a個長度單位的A',作A'關於l的對稱點A", 連A"B,交直線l於點N,將N點向左平移個單位的M。

問題9:連AB,作AB的中垂線與直線l的交點即為P。垂直平分線上的點到線段兩端點的距離相等.︱PA-PB︱=0.

問題10:作直線AB,與直線l的交點即為P.三角形任意兩邊之差小於第三邊.︱PA-PB︱≤AB.︱PA-PB︱最大值=AB

問題11:作法,作B關於l的對稱點B',作直線A B'與l交點即為P.

原理:三角形任意兩邊之差小於第三邊︱PA-PB︱≤AB'.

︱PA-PB︱最大值 =AB'

問題:△ABC中每一內角都小於1200,在△ABC內求一點P,使PA+PB+PC最小.

作法:所求點為「費馬點」,既滿足∠APB=∠BPC=∠APC=1200.以AB、AC為邊向外作等邊△ABD、△ACE,連CD、BE相交於P,點P即為所求點.

原理:兩點之間線段最短.PA+PB+PC最小值=CD.

掌握了基本模型和作圖方法及原理,下面我們看看題目是如何來考的。

以上是一道中考真題,下面我們來看看如何解決問題,拿到滿分。

中考必勝
中考必勝

初中數學提分必會040-用代數方法來拯救被平面幾何摧殘的你中考數學備戰039-一道經典的反比例函數難題,三步帶你搞定初中數學備考必刷038-原來正方形夾半角模型還可這麼考!中考數學備戰034-中考提分小絕招之中線長定理的巧妙運用

相關焦點

  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    本專欄包括人教版九年級上冊第24章圓(第1-35課)及中考數學幾何動點最值壓軸題型(第36-79課)含隱形輔助圓、瓜豆原理、胡不歸問題、阿氏圓模型、費馬點模型,由於將軍飲馬問題與三角形關係密切,故放在了三角形專欄進行了講解。
  • 中考熱點,二次函數區間範圍的最值問題求解策略,提分必備
    二次函數最值問題的重要性毋庸置疑,其貫穿了整個中學數學,是中學數學的重要內容之一,也是學好中學數學必須攻克的極為重要的問題之一。二次函數在閉區間上的最值問題是二次函數最值問題的典型代表,其問題類型通常包括不含參數和含參數二次函數在閉區間上的最值問題、二次函數在閉區間上的最值逆向性問題以及可轉化為二次函數在閉區間上最值的問題,在此類問題的解決過程中,涉及數形結合、分類討論等重要數學思想與方法。中考中多涉及到含參數二次函數在閉區間上的最值問題,很多學生不習慣數形結合及分類討論思想的運用,導致解題失誤或錯誤。
  • 吳國平:如何求解中考數學當中,函數最值類問題
    雖然全國各地中考試卷都不太一樣,但很多熱門考點都差不多。我們認真去研究近幾年全國各地中考數學試卷,會發現很多地方都會把求函數最值問題作為壓軸題的考點。中考數學壓軸題若考到最值問題,絕大部分都是與二次函數相結合。同時二次函數作為初中數學當中最為複雜、難度較高的函數,這就使最值問題更具有難度性、靈活性,突出考查學生綜合能力。
  • 初中數學:動點問題-阿氏圓最值模型
    中考數學,優秀的孩子必須會阿氏圓!「阿波羅尼斯圓」簡稱「阿氏圓」,已知A、B兩點,點P滿足PA:PB=k(k≠1),則滿足條件的所有點P的軌跡構成的圖形是一個圓。阿氏圓最值模型解題方法:①計算PA+k·PB的最小值時,利用兩邊成比例且夾角相等,構造母子型相似三角形;②兩個三角形的相似比等於k;③根據相似比,找出一條線段替換k·PB,轉化成三點共線求最小值。
  • 一道題幫你分析中考數學——幾何動點中的最值問題
    最值問題,一直都是中考數學的熱點題型。無論是幾何最值還是函數最值,全國各地的考題均有涉獵。而部分省市區更是頻繁到年年考,年年讓一批考生痛哭流淚!正所謂「年年歲歲花相似,歲歲年年人不同!」最值問題也是變著花樣出題,今年與二次函數結合,明年又與一次函數結合。
  • 數學難點|初中重難點——幾何代數最值問題
    最值問題,是初中數學的難點,是拉開分數差距的題目類型。這個問題又細分分為幾何問題和代數問題。幾何最值問題是指在一定的條件下,求平面幾何圖形中某個確定的量(如線段長度、角度大小、圖形面積等)的最大值或最小值。在中考中常以填空選擇及解答題形式出現,難易程度多為難題、壓軸題。
  • 高中數學:「八大模型」,輕鬆搞定空間幾何體外接球與內切球問題
    小助手主要為幫助初高中同學提高成績,每天分享初高中提分秘籍,答題技巧,敬請關注!在高中數學中立體幾何一直都是作為重點以及難點對於大家進行考查。而立體幾何中的重難點是哪些呢?其實在立體幾何中重點考查的就是空間幾何體的外接球與內切球問題。
  • 2021年中考專題複習,二次函數線段、周長最值問題,四種處理思路
    前節提要:2020年中考數學專題複習,幾何最值之將軍飲馬、胡不歸、隱形圓2020年中考專題複習,旋轉之半角模型、手拉手模型、一線三角模型2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法2020年中考數學專題複習,平行四邊形存在性問題
  • 九年級數學,與自變量有關的二次函數最值問題,圖像法解題更清晰
    在我們印象裡,二次函數有不少最值的專題,比如二次函數與面積最值問題、二次函數實際問題最值問題等等。而本節主要介紹的為二次函數本身的最值問題,只有熟練掌握二次函數本身最值問題,才能更好地解決其它類型的最值問題。
  • 中考難點:說愛動點幾何最值問題不容易,細說之解題思維模型
    最值問題是初中數學的重要內容,也是一類綜合性較強的問題,它貫穿初中數學的始終,是中考的熱點問題。它主要考察學生對平時所學的內容的綜合運用,尤其動點幾何最值問題是中考熱點壓軸問題。幾何動點最值類題型之所以能成為中考數學壓軸題的常考題型,除了題型複雜、知識點多外,更主要是能很好考查一個人運用數學思想方法的能力,如常用的數學思想方法有方程思想、數學建模思想、函數思想、轉化思想、分類討論法、數形結合法等等。幾何動點問題主要是以幾何知識為載體,突出了對幾何基本圖形掌握情況的考查、數學邏輯思維能力和數學表達能力的考查。
  • 中考提分新策略,三大思維模型助力破解四邊形最值難題
    四邊形中的最值問題其實是三角形中最值問題的延伸,這類最值問題涉及到的知識點有五個:應用兩點之間線段最短;應用垂線段最短;應用三角形三邊之間的關係;應用軸對稱、旋轉、平移(初中三大幾何變化);構造軌跡圓求最值(包括定角模型、定線模型、隱含圓模型),舉例說明如下:模型1 將軍飲馬模型1.(2019永安市一模)如圖,在平面直角坐標系中,矩形ABCD的頂點
  • 中考數學:最值問題有多難?網友:題目剛看完,我就決定放棄了
    中考數學最常考的壓軸題是什麼?從全國各地各年份的中考數學真題中不難發現,最值問題無疑是最熱門的考點。雖說各地的考試難度不一樣,最值問題的難點也不一樣。有些地區簡單到只考「將軍飲馬」的基礎模型;而有些省市就不一樣了,「胡不歸」、「阿氏圓」、「費馬點」等大部分學生或者老師連聽都沒聽說過的模型!而「胡不歸」、「阿氏圓」這些模型究竟有多難?我們不妨一起來看看下面這兩道例題!
  • 九年級數學,二次函數中三角形周長的最值問題,解題思路很重要
    很多同學學習完「鉛錘法」後,按照解題套路能很快解決二次函數中三角形面積的最值。如果面積最值問題還沒有掌握的話,可以參考:2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法但是,冷不丁的遇到二次函數中三角形周長的最值問題
  • 一道中考數學,將軍飲馬問題,竟然用物理知識巧妙解決數學問題
    將軍飲馬問題,在中考數學裡頻頻出現,是熱門考點。會套路的同學,真的是分分鐘解決問題,不明白解題模型,真的是抓破腦袋,也想不出來。一般的將軍飲馬問題,很多同學、老師都已經研究透了。中考命題老師為了確保能刷掉一些同學,也是煞費苦心,絞盡腦汁,在基礎模型上再次創新。正所謂,魔高一尺,道高一丈!2020黑龍江中考數學第18題,就是一道將軍飲馬問題的創新題,老鹿竟然用物理知識輕鬆解決!先看題目:
  • 九年級數學,小狗活動範圍的最值問題,容易出錯
    在圓中,有一類問題,求小狗的活動範圍,這類題目一不留神就很容易出錯。並且,可與二次函數相結合考查最值問題,難度上也會相應變大。在解題時注意,小狗活動的範圍應該是以所寄點為圓心,繩長為半徑的一個圓。分析:與例題2的分析類似,此時小狗活動的區域面積為以B為圓心、10為半徑的四分之三圓,以A為圓心、x為半徑的四分之一圓、以C為圓心、10-x為半徑的扇形的面積和,該扇形圓心角的度數為30°,然後得到關於x的二次函數,通過研究二次函數的表達式得到最值。中考不知道複習哪些專題?關注以下文章吧。
  • 高中數學:圓錐曲線「五大方面」最值問題,有效提分!
    高中數學圓錐曲線涉及了很多難點問題,包括最值與定值問題、求參數範圍問題、存在與對稱性問題。其中圓錐曲線的最值與定值問題一直以來都是高考中的一大難點,考查的知識點不是簡單的圓錐曲線的定義,還要綜合代數、平面幾何、三角函數等相關知識,這就大大提高了圓錐曲線解題的難度。
  • 2020年中考數學專題複習,二次函數與三角形面積最值問題,鉛錘法
    中考是人生中一次比較重要的重大考試,中考不僅僅決定著去哪所高中學校上學,可能也決定著將來進入哪所大學深造。隨著高中入學比率的下降,進入高中的難度也相應變大。因此,中考值得同學們全力以赴,而不是盡力而為。
  • 初中數學 | 動點最值問題19大模型+例題詳解,徹底解決壓軸難題
    動點最值問題永遠都是中考最難的壓軸類題目,很多同學都反應不知道該怎麼下手尋找思路。其實這類題目的題型有限,全部總結歸納就是這19種,希望同學們對每一種都能掌握技巧,再遇見類似的就能及時找到思路。
  • 線段和差最值問題----將軍飲馬模型
    這個問題早在古羅馬時代也有,傳說亞歷山大城有一位精通數學和物理的學者,名叫海倫,一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解的問題:將軍每天從軍營A出發,先到河邊飲馬,然後再去河岸同側的B地開會,應該怎樣走オ能使路程最短?從此,這個被稱為「將軍馬「的問題廣泛流傳。將軍馬問題=軸對稱問題=最短距離問題(軸對稱是工具,最短距離是題眼。
  • 周十五精煉數學:重錘模型巧解三角形邊長問題
    來源:北國網周十五精煉數學分析發現,在2015年-2019年,有一類題型已連續出現在各個地區的中考之中,在2020年,它更是橫掃了近36個省市,並且在試卷中分值佔比竟達3-8分,萬千學子望而生畏,紛紛在它的考驗中敗下陣來,其中的基本結論,綜合性強,輔助線做法非常規,想在考場上臨場發揮