分子晶體與原子晶體

2021-01-19 化學微講堂

1.分子晶體的定義

分子間通過分子間作用力相結合形成的晶體叫分子晶體。如:乾冰、碘晶體、冰等。構成分子晶體的粒子只有分子。

特別提醒 稀有氣體單質是由原子直接構成的分子晶體,無化學鍵,晶體中只有分子間作用力。

2.常見的典型的分子晶體

(1)所有非金屬氫化物,如水、氨、甲烷

(2)部分非金屬單質,如滷素(X2)、O2

(3)部分非金屬氧化物,如CO2、SO3、

(4)幾乎所有的酸,如HNO3、H2SO4、

(5)絕大多數有機物的晶體,如苯、乙醇

3.晶體冰中有關氫鍵的易錯點

(1)晶體冰中每個水分子可以與緊鄰的4個水分子形成氫鍵(不是2個);每個水分子平均形成2個氫鍵(不是4個)。

(2)冰、氫氟酸中均有氫鍵,且O—H…O比F—H…F弱,但水的沸點更高,其原因是平均每個水分子形成的氫鍵數比HF多。

(4)晶體冰的密度比液態水的小。這是因為晶體冰中水分子形成的氫鍵具有方向性和飽和性,使得冰晶體中水分子的空間利用率變小。

4.原子晶體,整塊晶體是一個三維的共價鍵網狀結構,不存在單個的小分子,是一個「巨分子」,共價晶體由於原子間以較強的共價鍵相結合,熔化時必需破壞共價鍵,而破壞它們需要很高的溫度,所以共價晶體具有很高的熔點。

相關焦點

  • 分子晶體與原子晶體知識點總結
    2.物理性質及物質類別(1)物理性質①原子晶體一般熔點高、硬度大。②結構相似的原子晶體,原子半徑越小,鍵長越短,鍵能越大,晶體的熔點越高。④晶體中碳原子個數與C—C鍵數之比為:1∶(4×21)=1∶2。
  • 選修三分子晶體和原子晶體知識點梳理
    說明:  1、分子晶體的構成微粒是分子,分子中各原子一般以共價鍵相結合。因此,大多數共價化合物所形成的晶體為分子晶體。如:部分非金屬單質、非金屬氫化物、部分非金屬氧化物、幾乎所有的酸以及絕大多數的有機物等都屬於分子晶體。但並不是所有的分子晶體中都存在共價鍵,如:由單原子構成的稀有氣體分子中就不存在化學鍵。也不是共價化合物都是分子晶體,如二氧化矽等物質屬於原子晶體。
  • 晶胞圖(三):分子晶體及原子晶體
    二氧化碳的晶胞(晶胞中有 4 個二氧化碳分子)
  • 3-2《分子晶體和原子晶體》教學視頻及知識點總結 高中化學選修三
    分子晶體定義:分子間以分子間作用力(包括範德華力和氫鍵)相結合的晶體叫分子晶體,分子晶體中只含分子分子晶體中存在的微粒:分子  分子晶體中的相互作用是分子間作用力常見的分子晶體:①所有非金屬氫化物②幾乎所有的酸(一水合高氯酸為離子晶體,由水合氫離子和高氯酸根)
  • 高三化學教案:《原子晶體》教學設計
    一、學習目標  1.掌握原子晶體的概念,能夠區分原子晶體、離子晶體和分子晶體。  2.掌握金剛石等典型原子晶體的結構特徵,理解原子晶體中「相鄰原子間通過共價鍵結合而成空間網狀結構」的特徵。
  • 高中化學知識點總結:原子晶體
    1.原子晶體所有原子以共價鍵相結合,是三維的共價鍵網狀結構。3.原子晶體的空間結構(1)金剛石晶體正四面體網狀空間結構,C-C-C夾角為109°28′,每個碳原子採取sp3雜化。(2)二氧化矽晶體正四面體空間網狀結構,O-Si-O夾角為109°28′,Si採取sp3雜化。4.原子晶體的判斷方法(1)依據組成晶體的粒子和粒子間作用力判斷。
  • 金屬晶體——晶體、非晶體
    一、晶體與非晶體固態物質按其原子(或分子)的聚集狀態可分為晶體與非晶體兩大類。原子(或分子)按一定的幾何規律作規則排列而形成的聚集狀態,稱為晶體。原子(或分子)無規則地堆積在一起形成的無序的聚集狀態,稱為非晶體。
  • 等效法確定晶體中配位原子(或粒子)數
    首先理解記憶常見晶體中配位原子數。原子晶體:二氧化矽晶體矽的配位原子數是四,氧的配位原子數是2。金剛石中碳的配位原子數是4。分子晶體。二氧化碳分子晶體中,配位原子數是12.離子晶體:氯化鈉晶體中,鈉離子、氯離子的配位數都是6,氯化銫晶體中氯、銫的配位數都是8。氟化鈣晶體中,鈣的配位數是8,氟的配位數是4。(諧音「佛寺」)。金屬晶體。簡單立方釙的配位數為12。體心立方,鈉鎵鐵的配位數是8,面心立方銅、銀、金的配位數為12。六方立方的鋅,鈦、鎂的配位數是12。
  • 德國科學家實驗確定最小水分子晶體
    璀璨迷人的雪花是由水分子形成的晶體形成,水分子如何形成晶體結構?最小的水分子晶體是怎樣?德國哥廷根大學物理化學研究所與德國馬普學會動力與自組織系統研究所的科學家通過紅外線光譜分析手段確定,最少需要275個水分子才可以形成晶體,也就是首次確定了最小的水分子晶體結構。這一成果是研究物質由原子狀態進入固體狀態的變化過程(相變物理學)領域的重要成果,已在《科學》雜誌發表。
  • 晶體結構知識匯總
    原子晶體:僅有幾種,晶體硼、晶體矽、晶體鍺、金剛石、金剛砂(SiC)、氮化矽(Si3N4)、氮化硼(BN)、二氧化矽(SiO2)、氧化鋁(Al2O3)、石英等;金屬晶體:金屬單質、合金;離子晶體:含離子鍵的物質,多數鹼、大部分鹽、多數金屬氧化物;分子晶體、原子晶體、金屬晶體、離子晶體對比表晶體類型分子晶體
  • 【乾貨】典型的晶體結構之原子晶體 08
    作為最軟的礦物之一,石墨不透明且觸感油膩,顏色由鐵黑到鋼鐵灰不等,形狀可呈晶體狀、薄片狀、鱗狀、條紋狀、層狀體,或散布在變質巖(由煤、碳質巖石或碳質沉積物,受到區域變質作用或是巖漿侵入作用形成)之中。化學性質不活潑,具有耐腐蝕性。石墨具有層狀的平面結構,結構如圖二所示。每層中碳原子都排列成蜂窩狀晶體結構,層內原子間距0.142nm,層間距0.335nm。
  • 納米科學:確定了銀納米晶體的詳細分子結構!
    納米科學:確定了銀納米晶體的詳細分子結構!結構化學家和化學結晶學家艾莉森·愛德華茲博士為中國廈門大學研究人員領導的國際合作的一部分,對兩個136和374個原子的大型複雜銀納米糰簇進行了表徵。「這些結構具有巨大的分子量和非常大的晶胞尺寸,與蛋白質(大分子)晶體結構相當,這使得它們成為一項艱巨的任務,」愛德華茲說。兩種分子均具有2-3納米的顯著五倍核心,較小的核心為十面體,而較大的核心沿分子5倍軸伸長,在中心銀原子周圍形成一系列凸多面體殼。
  • 晶體和原子的世界結構
    大家好,歡迎關注我的百家號阿春的環球地理精選,今天給大家介紹的是晶體和原子的世界結構。我們的眼睛看到的世界是有限的,無論我們的目光多麼銳利,我們能夠看見的小東西都有一定的限度。超過我們的眼睛限度的小東西,我們是無法用肉眼看見的。我們周圍的東西,例如:山峰、森林、人們、野獸、房屋、石頭、晶體等,我們都可以用眼睛看見。
  • 晶體結構知識點匯總MS
    分子晶體原子晶體金屬晶體離子晶體定    義分子通過分子間作用力形成的晶體相鄰原子間通過共價鍵形成的立體網狀結構的晶體金屬原子通過金屬鍵形成的晶體陰、陽離子通過離子鍵形成的晶體組成晶體的粒子分  子原  子金屬陽離子
  • 晶體的結構和性質
    一、晶體的常識1.晶體與非晶體⑴晶體與非晶體的特徵◆常見的晶體和非晶體晶體:離子化合物、冰、金屬、寶石、水晶、大部分礦石。非晶體:玻璃、橡膠、瀝青等除晶體外的固體,玻璃又稱玻璃體。⑵得到晶體的途徑①熔融態物質凝固。
  • 分子晶體與氫鍵
    簡單的說,就是不同原子形成的共價鍵,是極性共價鍵,相同的原子間行程的共價鍵是極性鍵。同核雙原子分子(兩個原子相同),一定是非極性分子。多原子分子中,直線型,正三角形 ,正四面體,正八面體等等就是非極性分子。
  • 離子晶體知識點總結
    晶體。(2)離子晶體的熔點不一定低於原子晶體,如MgO的熔點(2 800 ℃)高於SiO2的熔點(1 600 ℃)。(3)離子晶體中除含離子鍵外不一定不含其他化學鍵,如CH3COONH4中除含離子鍵外,還含有共價鍵、配位鍵。(4)由金屬元素和非金屬元素組成的晶體不一定是離子晶體,如AlCl3是分子晶體。
  • 微課--離子晶體(選修)
    晶體。(2)離子晶體的熔點不一定低於原子晶體,如MgO的熔點(2 800 ℃)高於SiO2的熔點(1 600 ℃)。(3)離子晶體中除含離子鍵外不一定不含其他化學鍵,如CH3COONH4中除含離子鍵外,還含有共價鍵、配位鍵。(4)由金屬元素和非金屬元素組成的晶體不一定是離子晶體,如AlCl3是分子晶體。
  • 晶體熔、沸點高低的比較
    不同晶體類型的熔、沸點高低規律一般為:原子晶體>離子晶體>分子晶體。金屬 晶體的熔、沸點有的很高(如鎢),有的很低(如汞)。同類型晶體熔沸點高低的比較(1)原子晶體 一般半徑越小,熔、沸點越高。如熔點:金剛石 (C C)>二氧化矽(Si- 0)>碳化矽(Si- C)> 晶 體矽(Si- Si)。(2)離子晶體 離子所帶電荷越多,離子半徑越小,則離子鍵越 強,熔、沸點越高。
  • 耐火材料晶體結構
    晶體是具有空間格子構造的固體。一般情況下,晶體具有整齊、規則的外形,確定的化學成分和內部結構。晶體具有相對固定的化學性質,以及相對固定的密度、硬度、熔點、晶格能、熱膨脹係數等物理性質。圖1-1顯示了溫度變化時,同組分的晶體、玻璃和液體的體積變化。