將點到直線的距離公式應用到極致的淺談

2020-12-04 數學趣事

同學們好,很高興在高二相遇,你們遇到了點到直線的距離公式,這個是高中解析幾何中常用的公式之一,主要應用環境是直線和圓的場景。當然還有其他的應用場景在此不一一贅述,今天主要探討直線與圓的問題中,點到直線距離公式的應用。

本身這個公式很簡單,就是描述了平面內一個點到一條直線的距離,但是這個距離擔負著很多責任,比如高,最短距離,弦長,判斷直線和圓的位置關係等等都會看到它的身影;

我們如何利用點到直線的距離公式來幫助我們解決實際問題呢?這個需要同學們培養好解析幾何的意識,要清楚幾何圖形或關係都可以用代數式來描述,這是解析幾何的精髓。同學們用心體會吧。

好了下面我們通過實題來看看怎麼應用?

例題1

分析:首先我們先畫圖,將草圖呈現出來,然後在去觀察有何規律,

根據圖像來觀察,我們對於向量PB,PA一無所知,長度在變,兩個向量的夾角也在變化,所以無法直接根據向量的數量積定義來表述出來,所以我們需要轉化,可以做如下的轉述:

相關焦點

  • 距離公式的應用——點到直線的距離平行線的距離
    (一)平行線間的距離M、N是兩條平行直線之間上任意一點,它們之間最短的距離就是該平行線之間的距離。利用平行線間的公式就可以求出。平行線間的距離應用(二)點到直線的距離直線的傾斜角為三十度,與圓交於y軸,根據點到直線的距離公式,以及勾股定理求出直線與圓相交的弦長,從而得出A點是AE的中點,根據平行線性質DC的距離恰為EC的中點,根據三角形知識即可求出CD的距離。
  • 點到直線的距離公式應用展示--中國數字科技館
    文章數 點到直線的距離公式應用展示
  • 36:高中數學:點到直線的距離公式,平行直線間距離公式推導證明
    36:高中數學:點到直線的距離公式,平行直線間距離公式推導證明 原標題:36:高中數學:點到直線的距離公式,平行直線間距離公式推導證明
  • 高中數學說課稿:《點到直線的距離》
    《點到直線的距離》說課教案攀枝花市三中黃意南一、教材分析:1、地位與作用:解析幾何第一章主要研究的是點線、線線的位置關係和度量關係,其中以點點距離、點線距離、線線位置關係為重點,點到直線的距離是其中最重要的環節之一,它是解決其它解析幾何問題的基礎。
  • 點到直線的距離150題及解析
    A. 4個 B. 3個 C. 2個 D. 1個【分析】本題考查了直線、線段的性質,點到直線的距離,兩點間的距離的定義,是基礎題,熟記性質與概念是解題的關鍵..根據直線的性質,兩點間的距離的定義,線段的性質以及直線的表示對各小題分析判斷即可得解.
  • 高中數學裡面點到直線的距離公式,你要掌握的必備考試技能
    這次,我們把目光聚集在坐標平面上點到直線的距離。從A點開始往直線上引垂線,A點到直線的距離即垂足B與A的距離。如何計算A點(1,3)與直線2x-3y-1=0之間的距離——點到直線的距離公式當然,我們可以通過A點計算出垂線的公式,將兩個直線公式聯立,得出垂足B的坐標,之後通過距離公式(勾股定理)來求得AB間的距離。但是這種方法的計算量較大。實際上,求點到直線的距離時,用向量來做是非常快的。
  • 教師招聘考試:高中幾何「點到直線的距離」說課稿
    (一)教材分析1、教材的地位和作用點是幾何中最簡單的元素,直線是幾何中最簡單的曲線,點到直線的距離公式從距離的角度定量來刻畫點和直線的位置關係,為研究兩直線的位置關係及曲線和曲線之間的關係等整個解析幾何奠定基礎。學生對這節課的理解和掌握,直接關係到對以後解析幾何的學習,並且該公式在以後的解析幾何學習和研究中有著非常廣泛的應用。
  • 推導點到直線的距離公式到底有多少種方法?
    【總結】優點:計算量最小,只用了一個投影公式. 缺點:最不容易想到,不符合學生思維的習慣.【心路歷程】在解析幾何中,求點到曲線上的點的距離的最值或取值範圍,通常設點,套距離公式,轉化為函數求最值或取值範圍.這個想法nice!
  • 點到直線間的距離你會算嗎?直線之間的距離你會算嗎?
    一、前言作者之前已經為大家講解了直線的斜率,與如何建立直線的方程,那麼知道了直線的方程,就需要去研究直線的性質。二、兩條直線的交點坐標若給出兩條直線,如何求交點坐標?如果說上述的方程組有唯一解,則兩條直線相交;若方程組無解,則說明兩條直線平行。
  • 高考數學,圓錐曲線大題,判斷點到直線的距離是否是定值
    高考數學,圓錐曲線大題,判斷點到直線的距離是否是定值。題目內容:已知點P,Q的坐標分別為(-2,0),(2, 0),直線PM,QM相交於點M,且它們的斜率之積是-1/4。⑴求點M的軌跡方程;⑵過點O作兩條互相垂直的射線,與點M的軌跡交於A、B兩點,試判斷點O到直線AB的距離是否為定值,若是請求出這個定值,若不是請說明理由。第一問比較簡單,需要注意的是,因為直線PM和QM的斜率都存在,所以x≠±2。
  • p是曲線上的點,則該點到直線x-y-1=0的最小距離?幾個符合的切線
    其實無論是什麼樣的曲線只要是讓你求曲線上的點到定直線的最小距離,都是先找到該p點到直線x-y-1=0的最小距離時的狀態,而此時的點P處的斜率恰好就是直線x-y-1=0的斜率。根據斜率相等建立等量關係設點P到直線x-y-1=0的最小距離時的p點坐標為p(x0,y0),又因為一次導數y'=(e^x+x^2)'=e^x+2x,所以在曲線y=e^x+x^2在該p點的斜率為K=y'|x=x0=e^x0+2x0。
  • 直線關於直線的對稱直線——到角公式法
    首先,求出直線m和對稱軸p的交點坐標,即A(0,1).顯然,A點在所求直線n上.因為直線m,n關於直線n對稱,我們可以把p看作角平分線.在直線p上取個特殊點,當然越有利於運算越好,一般取在坐標軸上的點.我們取直線p與y軸的交點B(0,-3).根據角平分線的性質,點B到直線m和直線n的距離相等.
  • 點到直線距離計算及g++編譯
    已知兩點,a(x1,y1)、b(x2,y2),求點c(x3,y3)到a、b兩點所在直線的距離。
  • 《兩點間的距離公式》教學案例分析
    平面上兩點間的距離公式是解析幾何的基本公式。它為後續點到直線距離公式、圓、橢圓、雙曲線、拋物線方程的建立,直線與圓錐曲線的綜合等問題做好鋪墊。
  • 高中數學「點到平面距離計算」問題的求解一般方法與技巧
    (即高中數學必修2 - 第14講 基礎應用之「點到平面距離計算」)1. 基本問題說明在立體幾何中,經常會遇到求解各種距離的情形,比如點到平面、直線到平面、平面到平面或異面直線之間的距離。一般來說,這些問題都可以、也需要以「點到平面的距離」基本問題為立足點來解決。
  • 中考數學複習輔導:直線的點斜公式方程
    中考數學複習輔導:直線的點斜公式方程   不同於直線的一般式方程,在考試中遇見條件較為不明顯的試題時,我們就可以應用直線的點斜式方程。   直線的點斜式   已知直線上一點(x1,y1),並且存在直線的斜率k,則直線可表示為   y-y1=k(x-x1)   適用範圍:k≠0   ◆k=(y2-y1)/(x2-x1)(x1≠x2)   不管是什麼樣的有關於直線的方程公式,它們都是為便利解題而服務的
  • 淺談直線電機3D列印技術在太空服製作中的應用
    打開APP 淺談直線電機3D列印技術在太空服製作中的應用 tmmotion 發表於 2020-11-20 15:00:52 說到太空服,顯而易見,其對細節、材料等的要求達到嚴苛的程度,基於此,其製作過程需要由多名非常熟練的縫紉工匠耗費數千小時來建造一件太空服。
  • 高中數學知識點空間異面直線距離公式
    高中數學要知識點:空間異面直線  1. 空間直線位置分三種:相交、平行、異面。 相交直線共面有反且有一個公共點;平行直線共面沒有公共點;異面直線不同在任一平面內[注]:①兩條異面直線在同一平面內射影一定是相交的兩條直線。
  • 高中數學之直線的參數方程及應用舉例
    二 求定點到過定點的直線與其它曲線的交點的距離三 求直線與曲線相交的弦長點評:本題的解答中,為了將普通方程化為參數方程,先判定點M(-1,2)在直線上,並求出直線的傾斜角,這樣才能用參數t的幾何意義求相應的距離.這樣的求法比用普通方程求出交點坐標
  • 從1到12年級所有數學公式,總會用的到!
    28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊