「每日一題」如何求形如∫(ax^4+b)(cx^2+d)dx的不定積分

2020-12-05 吉祿學閣

本文主要介紹形如∫(ax^4+b)(cx^2+d)dx的不定積分通式求法及舉例應用。

一、不定積分的結果通式的求解

本題通式求解的過程中,主要是對分子按照分母進行分解,然後分項積分,分別用到冪函數和反正切函數的求導公式。

二、應用舉例

1.當a=b=c=d=1,b=3時:

2.當a=c=1,b=d=2時:

3.當a=c=2,b=d=1時:

4.當a=1,b=2,c=3,d=4時:

5.當a=3,b=2,c=1,d=2時:

6.當a=0,b=c=d=1時:

7.當a=1,b=0,c=d=1時:

相關焦點

  • 持續學習:數學分析之實數集理論和不定積分
    第1節,講原函數與不定積分的概念設f(x)在區間I上有定義,若存在I上的函數Φ(x),使對任意x∈I 有 dΦ(x)=f(x)dx 或 Φ`(x)=f(x),則稱Φ(x)是f(x)在I 上的原函數,f(x)在區間I 上的全體函數稱為f(x)在I 上的不定積分,記作 ∫f(x)dx定理:設Φ(x)是f(x)在區間I上的一個原函數,則對任意實常數C ,Φ(x)+C也是f(x)
  • 如何求形如∫dx/(√x+n√x)的不定積分
    本文主要內容:積分函數的分母為x的二次根式和x的n次根式的和,主要方法是換元法,通式計算及舉例如下。1.當n為奇數時的不定積分通式1.1舉例當n=3時的不定積分1.2舉例當n=5時的不定積分可見,n為奇數時,函數可積,且n越大,不定積分結果中函數類型越多越複雜。
  • 求不定積分∫x^3/√(1-x^2)dx的三種方法
    2020-02-21 18:02:14 來源: 楚鄂新阿 舉報   本文主要內容,介紹求不定積分
  • 兩種方法求不定積分∫dx/「(2+cosx)sinx」
    主要內容:本文主要通過待定係數法、三角換元法兩種方法,詳細介紹求不定積分∫dx/[(2+cosx)sinx]的具體步驟。方法一:主要思路:湊分和待定係數法綜合應用。∫dx/[(2+cosx)sinx]=∫sinxdx/[(2+cosx)sin^2x]=-∫dcosx/[(2+cosx)(1-cos^2x)]=∫[A/(2+cosx)+B/(1-cosx)+C/(1+cosx)]dcosx=∫[(1/3)/(2+cosx)-(1/6)/(1-cosx)-(1/2)/(1+cosx)]dcosx
  • 三種方式計算不定積分∫x√(x+1)dx
    主要內容:通過根式換元、分項湊分以及分部積分法等相關知識,介紹不定積分∫x√(x+1)dx的三種計算方法和步驟。根式換元法:設√(x+1)=t,則x=(t^2-1),代入得:∫x√(x+1)dx=∫t*(t^2-1)d(t^2-1),=2∫t^2*(t^2-1)dt,=2∫(t^4-1t^2)dt,=2/5*t^5-2/3*t^3+C,=2/5*(x+1)^(5/2)-2/3*(x+1)^(3/2)
  • 數研課堂|不定積分的計算
    ,經過多次分部積分可以得到循環的式子,參考下面的例子:得到含三角函數/反三角函數的不定積分(1)求(6)被積函數含有反三角函數,法一是分部積分法,法二是變量替換,令新變量等於反三角函數,最後化為有理函數積分.
  • 不定積分∫arctanxdx/(1+x)^3用到了哪些方法?
    主要內容詳細介紹求不定積分∫arctanxdx/(1+x)^3過程中用到的不定積分計算方法。本題詳細步驟如下:A1=∫arctanxdx/(1+x)^3=∫arctanxd(1+x)/(1+x)^3[①湊分法]=(-1/2)∫arctanxd(1+x)^(-2)[②湊分法]=(-1/2)arctanx/(1+x)^2+(1/2)∫(1+x)^(-2)darctanx[③分部積分法]=(-1/2)arctanx
  • a,b是非負數且a+b≤2求x^2+2ax+b=0有實根的概率?實則求幾何概型
    圖一那這道題如何解決呢?我們要明白這道題考我們的是什麼?這道題給出了a,b的範圍,實際上就是求滿足一元二次方程有實數根時的a和b重新組合成的範圍佔原來a和b範圍的比值——考的是一個幾何概型的題。幾何概型幾何概型滿足兩個條件:一是所有可能發生的事件概率均相等;二是所有的事件有無窮多個。所以對於求幾何概型的概率時都是用可能發生的事件的長度或者面積或者體積去比上所有事件的長度或者面積或者體積。
  • 不定積分分部積分法,三角函數眾神歸位.@海離薇.
    #不定積分#高等數學高數微積分集思廣益,出處是貼吧大神@愛佛費克斯+智力超群體育生:阿彝,三角函數∫(x^2)/((cosx+xsinx)(xcosx-sinx))dx;我講方言用分部積分法,大刀闊斧燒香拜佛。#轉發微博關注我就屏蔽我吧# @海離薇。 第一題是∫(x+sinxcosx)/(cosx-xsinx)^2dx。第二題是∫(x^2)/(cosx+xsinx)²dx。
  • 持續學習:數學分析之定積分
    可積的必要條件定理:f(x)在[a,b]上可積,則函數在該區間必有界定積分線性性質定理,與不定積分很像:設f(x) ,g(x)在I上都在[a,b]上可積,α,β為兩任意實常數,則αf(x)+βg(x)在區間上也可積 且∫[αf(x)+βg(x)]dx =α∫f(x)dx+β∫g(x)dx |積分上限b,積分下限a可積的充要條件定理:f(x)在[a,b]上可積 <==>對任意c∈(a,b
  • 談論不定積分及其求法
    一、原函數不定積分的概念原函數的定義: 如果區間I上,可導函數F(x)的導函數為f'(x),即對任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx那麼函數F(x)就稱為f(x)(或 f(x) dx)在區間 I 上的一個原函數。
  • '魔法'積分
    幾種原函數無法用初等函數表示的不定積分三角函數類型:高斯積分類型:菲涅爾積分類型:
  • 高數:不定積分的分部積分法使用總結與參考課件
    ● 不定積分的分部積分法基於兩個函數的乘積的求導運算法則,即● 不定積分的分部積分法的關鍵是構造v.基本思路是將被積函數f(x)拆分成兩個函數的乘積,即f(x)=g(x)h(x),並且其中一個函數的原函數好求,如h(x)的原函數為H(x),則可以直接令u=g(x),H(x)=v,則藉助分部積分公式可以將積分轉換為H(x)g』(x)的積分計算,如果該積分比原來的不定積分計算容易計算,則對f(x)的拆分是一個有效拆分,否則需要重新考慮其它方法
  • 每日一題20190521講解
    求原函數和求導數(微分)是互逆運算, 那麼換元積分法和求導(微分)運算中的哪一法則是相對應的?今天我們繼續來討論這個問題。(1)今天這幾組題使用的均是第一類換元積分法(湊微分), 是由d(x+-1/x)=(1-+1/x^2)dx演變而來。
  • 《不定積分的分部積分法》內容小結與參考課件節選
    一、分部積分法的基本依據不定積分的分部積分法基於兩個函數的乘積的求導運算法則,即二、分部積分法的基本思路不定積分的分部積分法的關鍵是構造v. 基本思路:是將被積函數f(x)拆分成兩個函數的乘積,即f(x)=g(x)h(x),並且其中一個函數的原函數好求,如h(x)的原函數H(x),則可以直接令u=g(x),H(x)=v,則藉助分部積分公式可以將積分轉換為H(x)g』(x)的積分計算,如果該積分比原來的不定積分計算容易計算
  • sinxsin2xsin3x積化和差公式.cosxcos2xcos3x,不定積分分部積分法.
    #不定積分#元歌送人頭被撞死死得好勿?數學早點休息∫1/(2cosx+2sinx+7)^2dx。我並非227受害者;但小號被炸號讓我厭惡王二張三李四自罰三杯兩盞淡酒!#萬能公式#三角函數二倍角換元法分部積分法不詆毀蠟筆小新一年唉...#轉發微博關注我就屏蔽我吧# @海離薇 @高維生命體 。。。
  • 「創作開運禮」淺談學習高數的導數有關內容
    · 基本函數的導數:所謂基本函數,也就是通常所說的初等函數,例如常數函數y=c,一次函數y=kx+b,二次函數y=ax^2+bx+c,冪函數y=x^a,指數函數y=a^x,對數函數y=loga x,自然對數函數y=lnx,三角函數,反三角函數等,這些函數的導數是需要記住的。
  • 揭開原函數、不定積分、定積分的神秘面紗!
    欲徹底掌握其中的難點,首先要清楚原函數、不定積分、定積分的含義,通俗點講,原函數、不定積分、定積分的含義如下:原函數:如果函數F(x)在定義域內可導,且導函數為f(x),則稱F(x)為f(x)的一個原函數。不定積分:若函數f(x)存在原函數,則f(x)所有原函數的集合稱為不定積分。換句話說,不定積分表示函數f(x)所有的原函數。
  • 數值微分與數值積分(一)
    (2)數值微分的實現MATLAB提供了求向前差分的函數diff,其調用格式有三種:①dx=diff(x):計算向量x的向前差分,dx(i)=x(i+1)-x(i),i=1,2,...,n-1。②dx=diff(x,n):計算向量x的n階向前差分。
  • 如何快且準地求解不定積分
    不定積分的求解是高數較難的部分,本文將通過兩道習題的講解,對不定積分的求解思路進行初步的闡述。1. 有理化+三角函數換元第一步,觀察被積函數形式,發現1+x和1-x能夠湊成平方差公式,優先考慮有理化。由於分子含獨立部分x,因此應對分子進行有理化,有理化過程如下所示:第二步,觀察有理化後函數形式,被積函數可以拆分成兩部分,且其中一部分很容易就能得出原函數,此時應考慮拆分,拆分過程如下所示:第三步,觀察積分部分,若對整個分母採取換元法,最後仍然無法將根號划去。此時,應考慮正弦函數換元法。在習題1的解答過程中,三角函數換元極其關鍵。