下一代動力電池正極材料:高電壓尖晶石材料

2021-01-17 新能源Leader

隨著新能源產業的快速發展,市場對於高能量密度的動力電池的需求正在不斷增大,提升動力電池能量密度主要有兩個方向:1)提高材料的容量,例如常見的高鎳三元材料就是通過提升鎳含量的方式提升材料的容量;2)提升材料的電壓,例如高電壓的尖晶石材料。

高電壓尖晶石材料雖然具有高電壓的優勢,但是卻存在高溫性能差和循環性能不理想的問題,制約了其在動力電池領域的應用。近日,加州大學聖地牙哥分校的WeikangLi(第一作者)、Minghao Zhang(通訊作者)和Ying Shirley Meng(通訊作者)等人通過對電極配方和電池結構的優化設計,顯著改善了厚LNMO電極的循環性能,提升了其應用價值。

實現無Co化,降低材料的成本是近年來正極材料的發展趨勢,下圖中作者總結了近年來正極材料中常見元素的價格走勢,可以看到所有原材料中Co元素的價格最高,並且波動最大,近年來則價格大幅攀升。此外Ni和Li元素的價格相對較高,近年來也處於持續走高的趨勢。我們對比不同類型的正極材料可以看到,高電壓的LNMO材料,不僅具有高電壓(4.7V)和高能量密度的優勢,同時其大量採用成本低廉的Mn元素,因此是一種理想的低成本,高能量密度材料。

雖然LNMO材料具有上述的優勢,但是要真正實現商業應用還需要克服一些難題,首先是LNMO高電壓特性造成的碳酸酯類電解液的分解,這些分解不僅會造成電池性能的衰降,甚至可能引發安全問題。此外,LNMO材料較差的導電性使得其在真正的商業化電極中應用時反應動力學特性較差。作者為了解決上述問題,對電極配方對於LNMO材料電性能的影響進行了研究。

實驗中作者採用了來自銷售商的三款LNMO材料(NM-LNMO、NE-LNMO和HT-LNMO),電極配方會對電池的性能產生顯著的影響,作者首先分析了導電劑對LNMO材料的影響,下圖a展示了不同導電劑對於LNMO電極(0.8mAh/cm2,電極配比為8:1:1)電性能的影響,從下圖a中能夠看到採用CA-1導電劑的電極在LNMO脫鋰後還出現一段平臺,這表明CA-1導電劑在高電壓下會發生較多的副反應,不適合應用在LNMO電極中,從下圖b所示的循環性能上可以看到CA-3導電劑具有最好的循環性能,這主要是因為CA-3導電劑的比表面積最小,減少了界面的副反應。

下圖c和d展示了不同粘結劑對於NE-LNMO電極電性能的影響,從圖中能夠看到採用B-1和B-2兩種粘結的電極循環性能最差,作者採用dQ/dV曲線法分析也表明採用B-1和B-2兩種粘結劑的電極在循環過程中極化顯著增加,這表明B-1和B-2兩種粘結劑在高電壓下穩定性較差,逐漸氧化分解,使得LNMO材料逐漸與粘結劑、集流體失去連接,導致了阻抗的增加。

下圖e中作者採用四探針的方法分析了不同的導電劑配比下電極的電阻率,從圖中能夠看到活性物質的比例超過90%以後,電極的阻抗會出現顯著的增加,這會導致電池在工作過程中的極化顯著增加,因此在後續的測試中作者電極的配比為90:5:5。

研究表明常規的不鏽鋼電池殼在4.5V以上的高電壓條件下會變得不穩定,與電解液發生分解反應,因此作者對比了普通不鏽鋼殼扣式電池和Al包裹扣式電池的庫倫效率,測試結果表明Al包裹的扣式電池在循環的初期能夠達到99%以上的庫倫效率,顯著高於不鏽鋼殼的扣式電池。

在完成了上述的電極配方的優化後,作者繼續對電極的厚度進行了優化設計,從下圖a能夠看到當電極的厚度較薄時(0.5、0.8mAh/cm2),循環過程中電極沒有出現顯著的衰降,但是當電極的厚度增加到2.5和3.0mAh/cm2時,電池在循環過程中出現了顯著的容量衰降,在30次循環結束時電池的容量僅有初始容量的30%。

在下圖b中作者對3mAh/cm2的厚電極按照0.1C的倍率進行循環,從圖中能夠看到前30次中電極的容量只有輕微的衰降,但是在30次以後開始快速衰降,但是當我們將循環衰降後的厚電極解剖出來,再次組裝為扣式電池,則其容量可以完全恢復,這表明厚電極在循環過程中的容量衰降更多的是來自金屬鋰負極的衰降和電解液的分解。

下圖c中作者分別採用薄電極和厚電極與石墨負極組成了扣式全電池,可以看到當採用薄電極時充電容量可達142mAh/g,但是當電極厚度增加到2.2mAh/cm2時,則LNMO材料的容量發揮顯著降低,作者認為這主要是高電壓下電解液分解產氣,電極間的氣泡導致的容量發揮降低,位了解決這一問題作者在正極一側增加了1mm厚的墊片,並將負極一側的0.5mm厚的墊片更換為1mm厚的墊片,從而在電池內部留出一定的氣室,從圖中能夠看到經過優化設計的厚電極充電容量可達147mAh/g,接近其理論容量,放電容量為119.2mAh/g,庫倫效率為81%。

作者的實驗表明,通過對扣式電池的結構進行優化,留出一定體積的氣室能夠有效的改善厚電極的電性能,但是扣式電池組裝的過程中內部電極所承受的壓力是不可測的。為了進一步分析壓力對於電極性能的影響,作者採用2mAh/cm2的厚電極與石墨負極組合為單層軟包電池。電池在前三次化成循環過程中,作者對電池施加了1100kPa的壓力,隨後拆除夾板循環20次,從圖中能夠看到電池容量快速降低到了初始容量的60%,庫倫效率也變的不穩定,隨後作者又重新安裝夾板,施加壓力,可以看到電池的容量恢復到了初始容量的90%,電池的庫倫效率也變得穩定,在經過700次循環後,電池的容量保持率為58.7%。

為了分析電池衰降的機理,作者將循環後的電池進行了拆解,並將循環後的電極重新組裝為扣式電池進行測試,從下圖c測試結果可以看到循環後的LNMO電極在扣式電池中首次放電容量約為100mAh/g,在循環幾次後容量緩慢回升到117mAh/g,在C/10倍率下容量恢復率約為87.4%,而循環後的石墨負極在扣式電池中C/20倍率下的容量恢復率僅為53.9%,遠低於正極。這也表明LNMO/石墨體系電池在循環中的衰降更多的是來自於負極,這主要是正負極之間的穿梭效應導致的,高電壓下電解液的分解引起HF含量的增加,導致正極材料腐蝕加劇,溶解的過渡金屬元素會在負極表面析出,毒化負極,並催化SEI膜的分解和破壞,從而加劇了負極的衰降。

下圖中作者對比了採用3mAh/cm2的厚LNMO電極與石墨電極組成的扣式電池和軟包電池的性能,從圖中能夠看到扣式電池在循環300次後容量保持率約為72%,而採用夾板的軟包電池在循環300次後容量保持率為78%。但是與其他體系電池不同的是,LNMO體系電池的庫倫效率需要循環數十次後才能夠變得穩定,這可能是因為高電壓下電解液分解引起的,因此需要進一步從電解液溶劑和添加劑設計上進行優化,提升LNMO體系電池在高電壓下的穩定性。

Weikang Li的研究表明導電劑、粘結劑和電極的厚度會顯著的影響LNMO材料在高電壓下的循環性能,通過對電池結構的優化設計能夠顯著的提升厚LNMO電極的性能,此外適當的壓力對於提升電池的性能具有明顯的影響。

本文主要參考以下文獻,文章僅用於對相關科學作品的介紹和評論,以及課堂教學和科學研究,不得作為商業用途。如有任何版權問題,請隨時與我們聯繫。

Enabling high areal capacity for Co-free high voltage spinel materials in next-generation Li-ion batteries, Journal of Power Sources 473 (2020) 228579, WeikangLi, Yoon-Gyo Cho, Weiliang Yao, Yixuan Li, Ashley Cronk, Ryosuke Shimizu, Marshall A. Schroeder, Yanbao Fu, Feng Zou, Vince Battaglia, Arumugam Manthiram,Minghao Zhang, Ying Shirley Meng

文/憑欄眺

相關焦點

  • 下一代動力電池正極材料:高電壓尖晶石材料
    隨著新能源產業的快速發展,市場對於高能量密度的動力電池的需求正在不斷增大,提升動力電池能量密度主要有兩個方向:1)提高材料的容量,例如常見的高鎳三元材料就是通過提升鎳含量的方式提升材料的容量;2)提升材料的電壓,例如高電壓的
  • 2020WNEVC前沿技術解讀|高電壓鎳錳酸鋰正極材料及電池技術
    近年來,隨著電動汽車的高速發展,人們對電池能量密度、安全性、成本和環保等方面有更高追求,高電壓正極作為提升電池能量密度的重要手段已成為目前液態鋰離子電池的發展趨勢,也是目前的研究重點。鎳錳酸鋰作為一種高電壓正極材料,其電壓平臺在4.7 V左右,比能量超過600 Wh/kg,由於鎳錳酸鋰材料主要由鎳元素和錳元素組成,不含鈷元素,因此較為環保,成本也較為低廉。
  • 其魯:尖晶石錳酸鋰正極材料或將成為「無鈷電池」最優選擇
    關於電池「無鈷化」的問題,其魯認為,鈷對於電池的電化學的穩定性起到了非常重要的作用,但鎳、鈷材料稀缺,隨著電動汽車產業規模的擴大,風險也相應加大。因此,考慮到電池的安全與資源保障的安全,其魯建議考慮充放電性能穩定尖晶石錳酸鋰正極材料。
  • 被廣泛看好的正極材料尖晶石錳酸鋰為什麼沒有大規模應用?
    1984年Goodenough小組發現了尖晶石錳酸鋰(以下簡稱錳酸鋰)正極材料,因其具有生產工藝簡單、儲量巨大、大電流充放電能力和耐過充性能好、成本低廉以及無毒無汙染等優點,是被廣泛看好與研究的鋰電正極材料之一。
  • 我國鋰電正極材料市場現狀分析
    其它正極材料包括三元、錳酸鋰和磷酸鐵鋰均不享受出口退稅,經營艱難。國內正極企業更多是在為未來全球動力電池產能轉移到中國做市場布局。中國具有良好的硬體基礎如廉價的原材料成本以及一定的技術底蘊,同時中國巨大的需求空間使得產業升級的動力十足。動力電池產能向中國轉移趨勢明確。三星SDI目前正在合肥、天津和西安等地選址建設動力電池後端工藝和PACK生產線。
  • 北京大學在鋰電池錳基尖晶石正極材料方面取得進展
    近日,北京大學新材料學院潘鋒教授團隊在鋰電池錳基尖晶石正極材料方面研究工作中取得重要進展。正極材料通常被認為是決定鋰離子電池性能的決定性因素。理想情況下,正極應在較寬的工作溫度範圍內提供高比容量、高工作電壓、低成本、優越的安全性和長循環壽命,以滿足要求諸如混合動力汽車、嵌入式混合動力汽車和純電動汽車等應用的要求。在已有的正極材料中,錳基尖晶石型鋰錳氧化物LiMn2O4(LMO)由於其高電壓(Li/Li+≈4.0V)和低成本而引起了廣泛的應用。然而,循環性能差和相對較低的容量極大地限制了其作為鋰電正極材料的廣泛應用。
  • 乾貨| 鋰離子動力電池及其關鍵材料的發展趨勢
    開發高電壓、高容量的正極新材料成為動力鋰離子電池比能量大幅度提升的主要途徑; 負極材料將繼續朝低成本、高比能量、高安全性的方向發展, 矽基負極材料將全面替代其他負極材料成為行業共識. 此外, 本文還對鋰離子動力電池正極、負極材料等的選擇及匹配技術、動力電池安全性、電池製造工藝等的關鍵技術進行了簡要分析, 並提出了鋰離子動力電池研究中應予以關注的基礎科學問題.
  • 固態電池什麼時候可以商用_全固態電池電極材料
    固態電池什麼時候可以商用_全固態電池電極材料 網絡整理 發表於 2020-03-19 10:11:29   固態電池什麼時候可以商用   固態電池被普遍視為下一代電池技術
  • WNEVC 2020 | 中國科學院黃學傑:動力電池無鈷正極材料的技術研究
    其中,在9月29日舉辦的「先進動力電池技術創新」主題峰會上,中國科學院物理研究所研究員黃學傑發表精彩演講。其主要觀點如下:1.梯度組分設計電極材料和高鎳低鈷/無鈷層狀正極材料是三元正極材料降鈷的新技術。
  • 鈉離子電池高電壓正極材料低能耗規模化製備取得重要進展
    近日,在中國科學院過程工程研究所綠色化工研究部和中國科學院物理研究所清潔能源團隊多年來持續不斷的合作及共同努力下,鈉離子電池用聚陰離子型高電壓正極材料的低能耗規模化製備取得了重要進展聚陰離子型化合物氟磷酸釩鈉Na3(VO1-xPO4)2F1+2x (0 ≤ x ≤ 1)(NVPFs)作為鈉離子電池的正極材料,具有高達480 Wh/kg的能量密度。如果NVPFs能夠工業化應用,其全電池的能量密度可以和鋰離子電池媲美。
  • 詳解三類鋰離子電池正極材料的工作原理
    目前鋰離子電池中正極材料的實際容量普遍偏低,成為研究的重點和難點。對於目前常見的鋰離子電池正極材料的結構及工作原理的認識,可以幫助我們深入理解鋰離子電池中的核心問題。鋰離子電池是通過鋰離子在正極和負極材料之間來回嵌入和脫嵌,實現化學能和電能相互轉化的裝置,又被形象的描述為搖椅電池,最早由A. Armand在 1980年提出來,其結構及充放電原理如圖2所示。
  • 熔鹽法再生修復退役三元動力電池正極材料
    關鍵詞: 廢舊鋰離子電池;正極材料;低溫共熔鹽;修復再生;鎳鈷錳酸鋰在我國能源消費轉型升級的背景下,交通電動化成為我國未來的一項重大基本國策,動力鋰離子電池的全球生產能力每年以數百千兆瓦的速度擴張,大量動力蓄電池進入報廢環節,將產生一系列安全、環境和資源問題。在這種情況下,回收和再利用失效的鋰離子電池材料以及消除廢電池處理帶來的汙染,已經成為一項緊迫的任務,因此,開發一種安全、可推廣、低成本、環保的NCM正極材料回收修復再生方法具有很重要的意義。目前普遍認為,鋰缺失和晶相結構的變化是造成三元正極材料比容量降低的主要原因之一。
  • NEC開發高電壓、壽命長的次世代錳系鋰離子充電電池
    NEC日前開發了一款全新錳系鋰離子充電電池,其電池包含了可產生高電壓的正極材料、以及在產生高電壓的同時提升其穩定性的電解液。為此,NEC致力於開發可產生高電壓電力的電池、以及可控制正極表面於高電壓生成時所產生氧化分解情形的電解液。   本次所開發的正極材料及電解液,不僅能夠維持電池的安定性,更可提升30%的能源密度,達到電池大容量、輕量化的雙重目的。透過這項研發,未來將能滿足延長電動車續航距離、減輕蓄電系統重量、以及因電池模組數量的減少而使電池管理更加容易等多重益處。
  • 我國鋰電池正極材料發展現狀與負極材料廠商排名
    層狀錳酸鋰用作鋰離子電池正極材料的缺點是雖然容量很高,但在高溫下不穩定,而且在充放電過程中易向尖晶石結構轉變,導致容量衰減過快。錳酸鋰在中國市場的使用還主要定位在小型電池領域,無法應用於高端領域,更不能完全取代鈷酸鋰材料在小型鋰電的地位。
  • 超穩定錳基正極材料助力鋰離子電池可持續性|《自然-可持續性》論文
    《自然-可持續性》本周發表的一項研究LiMnO2stabilized by interfacial orbital ordering for sustainable lithium-ion batteries報導了一種用於鋰離子電池的超穩定的錳基正極材料LiMnO2
  • 上午10點 | 一起探討動力電池正級材料
    在2020年裡,材料人舉辦了近20場大小線上研討會,總參與人數超過5萬。
  • 超穩定錳基正極材料助力鋰離子電池可持續性 |《自然-可持續性》論文
    《自然-可持續性》本周發表的一項研究LiMnO2 stabilized by interfacial orbital ordering for sustainable lithium-ion batteries報導了一種用於鋰離子電池的超穩定的錳基正極材料LiMnO2。
  • 華人科學家揭示正極材料脫鋰和嵌鋰相變機理
    近日,在勞倫斯伯克利國家實驗室任職的華人女科學家Guoying Chen在《Nature Communication》雜誌上發表文章闡述了正極材料LiXMn1.5Ni0.5O4(0£x£1)在嵌鋰和脫鋰過程中的相變反應機理。
  • 進展 | 高電壓鈷酸鋰鋰離子電池正極材料研究進展
    鈷酸鋰(LiCoO2)是最早商業化的鋰離子電池正極材料。由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有最高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用最廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。
  • 中科院高電壓鈷酸鋰鋰離子電池正極材料研究獲進展
    來源:中國科學院鈷酸鋰(LiCoO2)是最早商業化的鋰離子電池正極材料。由於其具有很高的材料密度和電極壓實密度,使用鈷酸鋰正極的鋰離子電池具有高的體積能量密度,因此鈷酸鋰是消費電子用鋰離子電池中應用廣泛的正極材料。隨著消費電子產品對鋰離子電池續航時間的要求不斷提高,迫切需要進一步提升電池體積能量密度。