不是每個人具有高斯的數學天賦,但數學原來這麼簡單

2020-12-05 三花

數學是什麼?

音樂家說:數學是世界上最和諧的音符。

體育老師說:數學是鍛鍊人的思維的體操。

植物學家說:世界上沒有比數學更美的花朵。

美學家說:哪裡有數學,哪裡才有真正的美。

哲學家說:或許你可以不相信上帝,但是你必需相信數學,世界什麼都在變,唯有數學的理論是永恆的。

老師常說:學好數理化,走遍天下都不怕。這也說明數學這個學科的重要性。

我覺得數學是一大基礎學科,可一這麼說哲學是人類用語言來解釋世界,那麼數學就是用數字來解釋世界。數學不僅可以鍛鍊我們邏輯思維能力而且還能提高人的智商,就是使人變聰明!數學是使人變聰明的學科!

關於數學有一個不得不講的典故,那就是高斯了。

德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。據說高斯在還不會講話就自己學計算,有一天高斯的數學教師對同學們說:「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」

結果不到半個小時,小高斯就有了答案,老師頭也不抬說:「去,回去再算!錯了。」高斯卻站著不動說:「老師!我想這個答案是對的。」

數學老師本來想怒吼起來,可是看到小高斯的答案:5050,他驚奇起來,這個8歲的小鬼怎麼這樣快就得到了答案呢?

高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。在老師的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

不是每個人具有高斯的數學天賦,但我們有學習的秘籍,小編推薦的下面秘籍就是學習小朋友學習數學的梯子,希望家長們可以選擇擁有它。

相關焦點

  • 伽羅瓦,高斯,阿貝爾,這三人誰的數學天賦最高?
    歷史上有非常多的傑出數學家,若論成就,很多榜單都把高斯排在第一。而實際上數學是一門非常吃天賦的科學,有些人年紀輕輕就已經完成了很多人一生都達不到的學術成就。所以說如若我們拋開成就不談,都有哪些數學天賦極高的天才呢?
  • 偉大的數學大師——高斯
    老師很驚訝,一個年僅10歲的孩子,憑藉自己的觀察就能發現這樣的數學規律,真的很不簡單。從此,老師對他刮目相看。這個令老師驚訝的孩子就是高斯。由於高斯在數學上表現出了出色的天賦,老師特意從德國漢堡買來了最好的算術書送給他,由此高斯便開始在數學海洋中盡情徜徉。
  • 數學考不好?是不是拜錯了大神——你對高斯一無所知
    這個故事還有一個高級版本:據高斯的粉絲,著名數學史家E·T·貝爾考證,老師當時出的題目並不是1+2+3+…100,而是81297+81495+81693+…+100899。雖然方法是一樣的,但是這麼一長串數字擺在面前,就算是一般初中生恐怕也不敢下手。
  • 簡述數學王子高斯偉大的一生
    高斯約翰·卡爾·弗裡德裡希·高斯,1777年生人,德國著名數學家、物理學家、天文學家、大地測量學家,近代數學奠基人之一高斯曾說,他在麥仙翁堆上學會了計算而且能夠在頭腦中進行複雜的計算,而這是上帝賜予他一生的天賦。九歲時,就巧妙計算出了1到100的和,因為他發現了其中的等差數列的規律。他的家庭出身並不能支持他出學習研究數學,但是他的聰慧得到了費迪南公爵的肯定,從高斯14歲開始,公爵就一直 贊助他做學問,直至費迪南被殺死去。
  • 數學王子高斯多厲害?如果他的成果全部發表,能讓數學進步一百年
    李宗盛有句話說的是「任何一個領域站在頂峰的人,靠的都是天賦,你不需要找,他就站在那裡,閃閃發光」。我認為這句話有一定的道理。,可見他對數學的研究非常傳奇,接下阿里就讓我們一起來聊一聊「數學王子」高斯神一般的人生。
  • 物理學家高斯被數學光芒罩住了
    原文刊發於《物理教師》2012,33(2):45-46 「數學王子」桂冠下的物理學家—高斯 陳 勇 邱麗芬 摘要:高斯(Gauss)在數學上有著卓越的貢獻,人們賦予其「數學王子」的桂冠.大多數人是由於高斯的數學成就而了解他,鮮有人了解其隱藏在數學桂冠下的物理成就
  • 智能時代,需要像「高斯」這麼會算的數學王子
    ……看到上面這一串數學題,我的思緒頓時就回到了高考前衝刺的數學課堂上。在那個讓人昏昏沉沉的夏日午後,數學老師大聲說著:「考試時別緊張,一定是先易後難」,但是我心裡卻在默念:「離下課還有9,7,5,3,1……秒」。
  • 數學天才——高斯
    小高斯回答說:「我不是按照1、2、3的次序一個一個往上加的。老師,你看,一頭一尾的兩個數的和都是一樣的:1加100得101,2加99得101,3加98也得101…把一前一後的數相加,共有50個101,101乘50,得到5050。」小高斯的回答使老師感到吃驚,因為他還是第一次知道這種算法。老師通過這道考題終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。
  • 高斯:被愛因斯坦譽為「超越一切」的數學天才,差點成了搬磚工
    高斯在數學方面取得了很大的成就,甚至愛因斯坦稱讚他說:超越一切。但是,高斯早期差點被埋沒,差點成為了搬磚工。出身貧窮,但是少小就有一種天賦高斯的父母親都出身貧窮,在他出生的時候,家裡更是一貧如洗。父母親也沒有培養孩子的意識,他們整日忙碌,只是為了謀生。但是,高斯卻好像生來就具備一種天賦,甚至表現出一種神通的能力。高斯三歲那年,就表現出數字方面的天賦。
  • 「數學王子」高斯到底有多厲害?19歲,破解了千年數學難題
    說起世界頂尖的數學家,高斯一定是榜單中不可缺少的一位。但高斯在數學這個領域到底有多麼厲害?很多人都感受不到,知道最多的無非是高斯在7歲時快速做出了「1+2+3+4+5+......+99+100」這道題。
  • 激發了四位「頑童」的天賦,造就了四位數學之神
    現在看來,要不是剛被退學的小歐拉及時給老爸秀一下數學天賦,估計數學界就沒歐拉啥事兒了... 其實每個人天生下來都是天才,而引導一個「調皮」小孩愛上數學(學習)可能只需一道有趣的題目或者一個有趣的靈魂
  • 從高斯、拉馬努金到談方琳,少年數學天才擁有僅是一顆聰明頭腦嗎
    當布特納剛一寫完時,高斯也算完了,並把寫有答案的小石板交了上去。貝爾說,高斯晚年喜歡跟人們談論這件事,說當時班上只有他寫的答案是正確的,而其他孩子都錯了。高斯沒有明確地講過,他是用什麼方法這麼快就求出正確答案。後來數學史家們傾向認為,高斯當時已掌握了等差數列求和的方法。一位年僅10歲的孩子,能獨立發現這一數學方法實屬不簡單。
  • 數學天才——高斯的故事
    1787年高斯10歲,他進入了學習數學的班次,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這麼一門課程。數學教師是布特納(Buttner),他對高斯的成長也起了一定作用。   在全世界廣為流傳的一則故事說,高斯10歲時算出布特納給學生們出的將1到100的所有整數加起來的算術題,布特納剛敘述完題目,高斯就算出了正確答案。不過,這很可能是一個不真實的傳說。
  • 高斯為什麼是數學王子?人家3歲時的成就,很多人一輩子也比不上
    筆者-小文在數學界中,有這樣一句話,「其他數學家和高斯」,高斯被人們稱為「數學王子」,他在數學領域上碩果纍纍,這是眾人皆知的事實,但為什麼高斯一個人就可以佔據半個數學界呢?其實這個問題與天賦有關,因為僅僅在高斯3歲的時候,他就已經展現出了過人的才華。高斯出生於一個貧困人家,但幸運的是,高斯的人生似乎一直順風順水,他的身邊從來不缺少伯樂和支持他事業的人。
  • 學好數學,真的需要天賦嗎?聽聽數學家怎麼說……
    造成的結果是,我看到很多人直到成年、工作之後,仍然沒有解決問題的能力,他們對數學如此恐懼也就不難解釋了。3、邏輯不是數學邏輯不是數學,但是大家很容易將兩者混為一談。簡單來說,掌握一個規律,和把這個規律說清楚,是兩碼事。數學是前者,邏輯是後者。比方說,我們都知道可口可樂是什麼味道的。
  • 數學史20大數學家之—高斯,彪悍的人生不需要解釋
    如果你了解數學,你一定對高斯小時候就能計算出1到100,這100個自然數之和的故事並不陌生。高斯被稱為數學王子,以他冠名的方法,定理,概念數不勝數。今天我們就一起領略一下這位「數學大魔王」的開掛人生。一、學霸初長成1777年高斯生於德國一個貧困的勞工家庭,但貧窮未能掩蓋他過人的數學天賦。21歲就能完成了對數論領域具有革命性影響的著作《算術研究》。過人的天賦引起了當地公爵的注意,在公爵的資助下,高斯開啟了開掛的學術生涯。
  • 高考數學讓你崩潰,你應該感謝歐拉、高斯、笛卡爾貢獻這些知識點
    歐拉:貢獻了高考數學中的大部分符號如果要說到天才,歐拉可以說是數學史上最璀璨耀眼的一顆明星之一,也就只有牛頓、高斯寥寥數人可以與其媲美。他 20 歲參與巴黎科學院獎金的爭奪,連續 12 年奪得第一,這個記錄至今無人能破。
  • 數學王子高斯:2000多年未解難題,竟被他一夜解決
    可是那兩道題很快就做完了,但是夾著的那張紙上的題卻將它難住了,少年較勁腦汁,感覺自己學過的數學知識都無法運用到,結果這正激發出了少年的鬥志,少年決定堅決要攻克這道難題。這個數學天才就是了不起的數學家高斯。高斯是一個數學天賦極高的天才,但是這樣一個天才卻並沒有因為極高的天賦而放棄努力學習。繪畫和數學同樣需要天賦,如果小孩子從小表現出繪畫天賦,小編推薦父母其實可以為孩子報一些在線美術的課程,能讓孩子享受到1對1的美術教育。
  • 新編世界上下五千年,數學王子,高斯
    高斯答道:「我沒算過。」於是高斯就把他算的過程說了一遍:「聽完題後我就想,1加100等於101, 2加99也等於101,直到50加51都是101,即每兩個頭和尾挨著的數相加;和數都是一樣的。這樣就總共有50個101,用101乘50不就等於5050嗎!」這個老師聽了高斯的回答,深受震動,他改變了對這群窮學生的哪視態度。原來高斯用的方法是古代數學家經過長期努力才找到的求等差級數和的方法。
  • 同餘式與模運算:數學王子高斯的偉大發明
    高斯的老師布呂特內爾與他的助手馬丁·巴爾特斯很早就認識到了高斯在數學上的天賦,同時卡爾·威廉·斐迪南·馮·布倫瑞克也對這個天才兒童留下了深刻印象。於是他們從高斯14歲起便資助其學習與生活。1796年,19歲的高斯完成《正十七邊形尺規作圖之理論與方法》,成為第一位只用尺規作圖成功畫出正十七邊形的人。