來自浙江大學生命科學研究所的研究人員揭示了一種在同源重組修復中起重要作用的蛋白SPIDR/KIAA014,相關論文「Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair」發表在3月18日的《美國科學院院刊》(PNAS)上。
領導這一研究的是浙江大學生命科學研究院的黃俊(Jun Huang)教授,主要研究癌症發生的分子機制,以促進了解腫瘤的發生機制,推動進一步的藥物治療。
在細胞受到內源或外源性基因毒作用特別是電離輻射時會發生DNA損傷,並由此引發一系列細胞學反應。DNA的損傷類型很多,其中以DNA雙鏈斷裂(double strand break,DSB)最為嚴重。
DNA DSB的修復較其他類型的DNA損傷更加困難。不修復則可能導致染色體斷裂和細胞死亡,而修復不當則可能導致染色體缺失、重排、轉位和倒置等,從而易於形成腫瘤等疾病。DNA損傷的不完全修復可導致基因組不穩定,機體細胞為了對抗損傷,發展出多個修復系統來保證基因組的完整性,同源重組修復(homologous recombination repair,HRR)是DNA DSB損傷修復的主要方式。
BLM是高度保守的RecQ家族成員。近年來的研究表明BLM在DNA滯後鏈複製、DNA修復、同源重組及染色體穩定性維持過程中發揮重要作用。BLM解螺旋酶與同源重組(HR)機器協同作用幫助避免了不良同源重組事件,在同源重組反應中確保了高度準確性。然而關於這一協同作用的確切機制仍知之甚少。
在這篇文章中,研究人員確定了一個名為SPIDR的蛋白質將BLM和HR機器連接到一起。SPIDR與BLM和RAD51互作,促進了具有重要生物作用的BLM/RAD51複合體生成。其充當了BLM和RAD51 foci(聚焦點)組裝的支架蛋白。研究人員證實在細胞中耗盡SPIDR,可導致姐妹染色單體交換率增高,同源重組缺陷。此外,耗盡SPIDR還可導致基因組不穩定,對DNA損傷劑超敏感。
這些研究結果表明,通過為多功能DNA加工複合物中BLM和RAD51協同作用提供支架,SPIDR不僅調控了同源重組效率,還對這條特異性同源重組信號通路起決定性影響。(生物谷Bioon.com)
Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair
Wan L, Han J, Liu T, Dong S, Xie F, Chen H, Huang J.
The Bloom syndrome gene product, BLM, is a member of the highly conserved RecQ family. An emerging concept is the BLM helicase collaborates with the homologous recombination (HR) machinery to help avoid undesirable HR events and to achieve a high degree of fidelity during the HR reaction. However, exactly how such coordination occurs in vivo is poorly understood. Here, we identified a protein termed SPIDR (scaffolding protein involved in DNA repair) as the link between BLM and the HR machinery. SPIDR independently interacts with BLM and RAD51 and promotes the formation of a BLM/RAD51-containing complex of biological importance. Consistent with its role as a scaffolding protein for the assembly of BLM and RAD51 foci, cells depleted of SPIDR show increased rate of sister chromatid exchange and defects in HR. Moreover, SPIDR depletion leads to genome instability and causes hypersensitivity to DNA damaging agents. We propose that, through providing a scaffold for the cooperation of BLM and RAD51 in a multifunctional DNA-processing complex, SPIDR not only regulates the efficiency of HR, but also dictates the specific HR pathway.