圖片來源:medicialxpress.com
2015年10月12日 訊 /生物谷BIOON/ --目前研究者並不能從實驗角度來研究分析細胞分裂期間染色體中DNA的組裝機制,近日,一項刊登在國際雜誌Scientific Reports上的研究論文中,來自西班牙公立巴塞隆納自治大學 (Universitat Autònoma de Barcelona)的研究人員通過研究發現了癌細胞的易位結構,這或許可以幫助闡明染色體是通過染色質的薄板結構來形成的。
在細胞分裂期間,每一個中期染色體都會包含單一巨大的長鏈DNA分子,同時形成攜帶多個核小體的染色質片段。當前的染色體模型認為染色質可以摺疊形成環狀或不規則的網狀結構,然而此前顯微鏡研究顯示,中期染色體的染色質可以形成多層板狀結構,相關研究發現或可幫助提出薄板模型結構,即染色體可以通過許多和染色體軸定向垂直的染色質堆積層來形成,近來研究者發現這種組裝模式可以幫助證明這種細長的圓柱形結構以及染色體的機械特性。
目前研究者Daban已經利用許多實驗室中不同的細胞生成技術所獲得的圖像來調查染色體的內部結構,而和染色體軸相關的G-和R-定位角已經被測定了,所有的研究結果指出的幾何約束可以被認為是中期染色體中染色質組裝的模型確認,而基於染色質環和不規則網絡的模型或許和這些制約並不兼容。
研究者指出,這種多層模型可以同染色質帶狀物的正交方向一致,本文研究為理解結構生物學和細胞遺傳學構建了一座橋梁,相關研究結果或可幫助科學家們理解染色體中DNA的三維組裝機制,同時也幫助理解細胞遺傳學方法的結構基礎來幫助診斷癌症和遺傳性疾病。(生物谷Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!轉載請註明來源並附原文連結。更多資訊請下載生物谷APP.
Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding
Joan-Ramon Daban
The three-dimensional organization of tightly condensed chromatin within metaphase chromosomes has been one of the most challenging problems in structural biology since the discovery of the nucleosome. This study shows that chromosome images obtained from typical banded karyotypes and from different multicolour cytogenetic analyses can be used to gain information about the internal structure of chromosomes. Chromatin bands and the connection surfaces in sister chromatid exchanges and in cancer translocations are planar and orthogonal to the chromosome axis. Chromosome stretching produces band splitting and even the thinnest bands are orthogonal and well defined, indicating that short stretches of DNA can occupy completely the chromosome cross-section. These observations impose strong physical constraints on models that attempt to explain chromatin folding in chromosomes. The thin-plate model, which consists of many stacked layers of planar chromatin perpendicular to the chromosome axis, is compatible with the observed orientation of bands, with the existence of thin bands, and with band splitting; it is also compatible with the orthogonal orientation and planar geometry of the connection surfaces in chromosome rearrangements. The results obtained provide a consistent interpretation of the chromosome structural properties that are used in clinical cytogenetics for the diagnosis of hereditary diseases and cancers.