鋰離子電池還能用水做電解液?水系電解液鋰離子電池全面解讀

2020-11-25 蓋世汽車網

鋰離子電池由於高電壓和高能量密度的優勢自上個世紀90年代推出以來得到了廣泛的認可,目前已經完全佔領了整個消費電子市場,並且隨著新能源汽車產業的發展,鋰離子電池的應用領域也開始向動力電池拓展。傳統的鋰離子電池主要採用有機電解液,這主要是因為傳統LCO/石墨體系鋰離子電池電壓較高,超過了水溶液電解質的穩定電壓窗口,因此只能採用有機溶液電解質。

近年來隨著人們對動力電池安全性、環保性要求的提高,水溶液電解質又開始得到人們的重視。相比於有機電解液(主要是碳酸酯類電解液)水系電解液具有無毒無害、不可燃、成本低和對生產環境要求低等優點,同時最重要的一點是水系電解液的離子電導率要比有機電解液高2個數量級,極大改善了鋰離子電池的倍率和快充性能,也使得超厚電極的應用稱為了可能。

水系電解液鋰離子電池的發展最早可以追述到1994年,當時Dahn等人提出了負極採用VO2,正極採用LiMn2O4的體系,理論上能量密度可達75Wh/kg,但是該體系水系鋰離子電池的循環性能較差,此後為了提升水系鋰離子電池的性能人們又對正負極材料、水系電解液等進行了眾多的研究。近日上海復旦大學的Duan Bin(第一作者)和Yongyao Xia(通訊作者)等對水系鋰離子電池的發展現狀和面臨的困難與挑戰進行了全面的回顧。

正極材料的選擇

Mn基正極材料    

經過多年的發展,LiMn2O4材料仍然是最常用的水系鋰離子電池正極材料,其在6M LiNO3溶液中比容量可達100mAh/g左右,電壓平臺在1-1.1V,研究表明LiNO3的濃度也會對LMO材料的性能產生明顯的影響,在5M的濃度下LMO材料的循環性能最佳,循環600次容量保持率達到71.2%,為了進一步提升LMO材料的循環性能Qu等人合成了多孔LiMn2O4材料,不僅大幅改善了倍率性能,還顯著提升了循環性能(10000次循環,容量保持率為93%)。

層狀結構正極材料

層狀結構正極材料是目前鋰離子電池最常用的正極材料,例如LCO、NCA和NCM等,作為傳統的正極材料,LCO也可用於水系鋰離子電池中,WangY等人研究表明在1M Li2SO4溶液中,LCO材料的循環穩定性受到PH的影響很大,在PH小於9時LCO的電化學穩定性受到很大的影響,這可能是由於在較低的PH下會導致H+嵌入LCO材料中導致的,同為層狀結構的NCM111材料也存在類似的問題,有研究顯示採用高濃度的水溶液(如LiNO3)也能夠抑制H+的嵌入問題,從而提升LCO的循環性能。

聚陰離子化合物

傳統的橄欖石結構正極材料LFP不僅能夠用於傳統的有機電解液體系,也能夠用於水溶液電解液體系,但是LFP在LiOH溶液中的脫鋰反應並不是完全可逆的,這主要是因為鹼性環境(或者含有溶解O2)會導致金屬離子沉澱,脫水後最終生成LFP與Fe3O4混合物,表面碳包覆是提升LFP在水溶液中穩定性的有效方法。其他橄欖石結構材料例如LiMnPO4和LiNiPO4也都有應用於水系電解液中的報導。

普魯士藍類

普魯士藍類材料具有開放式的結構、較大的嵌入空間因此能夠適應多種體積不同的陽離子,例如Li+、Na+、K+和NH4+,是一種理想的水系正極材料的候選者,通過獎普魯士藍中的金屬陽離子替換為不同的金屬離子後能夠改變Li+的嵌入電壓,近年來也得到了較多的關注。

負極材料

釩氧化物

VO2是最早被用作水系負極的材料,但是其循環性能非常差(僅僅25次左右),經過研究發現這主要是因為釩元素的溶解和水的分解造成的,其他的釩基負極材料還包括LiV3O8、Li0.3V2O5等,但是同樣面臨的循環性能差的問題。通過碳表面包覆、導電聚合物包覆等手段能夠能夠減少釩元素的溶解,提升釩基負極材料的循環性能。

聚陰離子材料

聚陰離子材料電壓平臺穩定、結構穩定性好、Li+擴散速度快是一種理想的水系離子電池負極材料,Na超離子導體,如LiTi2(PO4)3和TiP2O7是近年來研究的熱點,但是由於其導電性差、界面副反應等因素導致其循環性能較差,為了克服這一問題Luo等人通過CVD方法在LiTi2(PO4)3和TiP2O7表面均勻包覆了一層碳層,從而顯著提升了材料的循環性能(200次循環容量保持率82%),通過消除電解液中的O2、控制電解液PH等手段可以將LiTi2(PO4)3/LiFePO4進一步提升至1000次(6C倍率)容量保持率大於90%。表面碳包覆合元素摻雜也能夠有效的提升Na超離子導體的倍率性能,例如通過Sn摻雜和碳包覆等手段製備的LiTi2(PO4)3材料在4A/g的電流密度下可逆容量達到101.7mAh/g,循環1000次後仍然能夠維持99.5mAh/g的容量發揮。

有機類負極材料和其他材料

有機類負極材料近年來也得到了廣泛的關注,例如2008年Wu等人以LiMn2O4材料為正極,聚吡咯為負極材料製備了水系鋰離子電池,在前22次循環中可逆容量沒有明顯的衰減,但是在這一體系中正極材料的容量發揮較低,僅為45mAh/g,當將聚吡咯替換為聚苯胺後,正極材料的容量發揮提升到了89.9mAh/g(循環150次後),採用聚醯亞胺(PI)作為負極,LCO作為正極也能夠得到71mAh/g的容量發揮,並保持良好的循環壽命。

水系電解液

稀電解液和高濃度電解液

水對於各種類型的鹽類都有非常好的溶解性,溶解後的離子會與水分子形成溶劑化的外殼結構,同時水溶液具有安全、無毒和高電導率的優勢,是一種理想的鋰離子電解液。但是水的電化學窗口較窄(分解電位1.23V),同時一些正負極材料與水溶液接觸時不太穩定,會發生副反應。高濃度電解液是解決這一問題的有效方法,例如2015年Wang等人採用LiTFSI作為鋰鹽製備了高濃度水系電解液(>20mol/L),使得水系電解液的穩定電壓窗口提高到了3.0V,最近Wang等人還提出了不僅在有機電解液中能夠形成SEI膜,水溶液電解液中也能夠形成SEI膜,從而進一步降水溶液的穩定電位提高到了4.0V以上,使得高電壓水系鋰離子電池的開發成為了可能。

水系鋰離子電池由於安全、環保、低成本等因素得到了廣泛的關注,但是水系鋰離子電池在發展中仍然面臨的許多挑戰,例如能量密度偏低,這主要是因為水溶液的電化學窗口比較窄,因此導致大多數正負極材料在這一電化學窗口範圍內難以充分發揮出全部容量,部分正負極材料在水溶液環境中存在金屬元素溶解的問題,造成循環性能的下降,同時H+的嵌入問題也會影響水系鋰離子電池的循環穩定性,這都是在後續的水系鋰離子電池電解液開發中需要解決的問題。總的來看雖然水系鋰離子電池目前在能量密度上還處於劣勢,但是由於其安全、環保和高電導率等優勢仍然在一些領域具有應用潛力,後續通過高容量正負極材料和耐高壓水溶液電解液的開發,水系鋰離子電池有望成為攪動新能源領域的一股新力量。


本文主要參考以下文獻,文章僅用於對相關科學作品的介紹和評論,以及課堂教學和科學研究,不得作為商業用途。如有任何版權問題,請隨時與我們聯繫。

The developmentin aqueous lithium-ion batteries, Journalof Energy Chemistry xxx (2018) xxx–xxx, Duan Bin, Yunping Wen, Yonggang Wang, Yongyao Xia'

撰稿:憑欄眺


相關焦點

  • 鋰離子電池電解液超全面介紹
    在傳統電池中,通常使用水作為溶劑的電解液體系,但是由於水的理論分解電壓為1.23V,考慮到氫或氧的過電位,以水為溶劑的電解液體系的電池電壓最高也只有2V左右(例如鉛酸電池);在鋰離子電池中,電池的工作電壓通常高達3~4V,傳統的水溶液已不再適用,因此必須採用非水電解液體系作為鋰離子電池的電解液。其中非水有機溶劑是電解液的主體成分。
  • 【乾貨】鋰離子電池電解液超全面介紹
    事後三星電子中國區稱,在中國地區銷售的Galaxy Note 7供應商是ATL,採用的並非是由供應商三星SDI製造的會發生爆炸的電池。據SDI內部人士的評論分析,手機電池起火的原因是由於電池R角位出現了導致正負極短路的問題,電池採用卷繞工藝製作,使用的是常規的液態鋰離子電池電解液。好了,關鍵來了!
  • 鋰離子電池的掘墓者們:雙離子電池
    直到1938年Rudorff和Hofmann等人才首次利用HSO4-在石墨中的嵌入反應製造了首個搖椅式電池,1989年McCullough等人將水系電解液更換為有機電解液,正負極均採用碳材料,首次採用正負極雙離子嵌入反應,隨後該體系也被更多的人進行研究。相比於鋰離子電池,雙離子電池具有一下特點。
  • 寬溫型鋰離子電池有機電解液影響因素和研究進展
    由於多氟代酯和全氟代酯具有更高的閃點,甚至具有阻燃性,同時F取代提高了溶劑的氧化電位,因此可以明顯提高電解液在高溫下的熱穩定性和電化學穩定性,應用於鋰離子電池後安全性能突出。相關文獻中提到過的氟代酯分子結構及部分物理性能如表3所示。
  • 鋰離子電池電解液分解產氣機理詳細解讀
    鋰離子電池高電壓的特性賦予了其無與倫比的高比能量的特性,但是也導致了常規的碳酸酯類電解液分解的問題,我們以常規的EC溶劑為例,其在負極表面會發生還原分解,產生C2H4氣體,電解液中殘餘的H2O則會在充電的過程中發生分解,產生H2,電解液的分解會導致鋰離子電池在循環過程中產氣,產氣不僅會導致鋰離子電池發生鼓脹和變形,還會導致鋰離子電池極片之間貼合不緊,引起鋰離子電池性能的衰降
  • 2020年中國鋰離子電池電解液行業回顧與展望
    導讀:目前,電解液已基本實現國產化,其出貨量與鋰離子電池出貨量成正比。 電解液屬於鋰電四大材料之一,是鋰離子電池的血液,在保障鋰離子電池的安全性、長循環等性能方面至關重要。目前,電解液已基本實現國產化,其出貨量與鋰離子電池出貨量成正比。
  • 新宙邦:添加劑是鋰離子電池電解液的重點研究方向
    公告顯示,目前,添加劑的開發是鋰離子電池電解液領域的重點研究方向,其可以針對性的解決當前鋰離子電池普遍存在的循環壽命較短和安全隱患等行業共性技術難題,公司研發的電解液添加劑能非常有效的改善電池循環和高低溫等性能。
  • 電解液在鋰離子電池充放電過程中的行為研究
    鋰離子電池主要由正極、負極、隔膜和電解液,以及結構件等部分組成,在鋰離子電池的外部,通過導線和負載等,將負極的電子傳導到正極,而在電池內部,正負極之間則通過電解液進行連接,在放電的時候,Li+通過電解液從負極擴散到正極,嵌入到正極的晶體結構之中。
  • "兩高"水性可充電電池問世 比鋰離子電池更安全
    鋰離子電池以其高能量密度、高效率和低自放電率在可攜式電子產品和電動汽車中佔據主導地位,然而使用易燃的有機電解液所引起的嚴重安全問題阻礙了它的廣泛應用。水性可充電電池由於使用了不可燃且價格低廉的水溶液(即用水作溶劑的溶液)作為電解液,不僅比鋰離子電池更安全、成本更低,也更容易製備。
  • 天高能量密度水系電池的核心組件——鹽包水電解質
    然而,傳統的鋰離子電池使用有機溶劑作為電解質,不僅提高了對嚴格的乾燥製造環境的要求,而且由於其易燃性和可能的毒性,對大規模應用提出了挑戰。由於使用水系電解液能使電池系統完全避免這些風險,水系電解液是提高安全性的可行策略。因此,研究人員試圖找到一種水系電解液來解決傳統鋰離子電池中的安全問題。
  • 「兩高」水性可充電電池問世,比鋰離子電池更安全、更便宜
    「兩高」水性可充電電池問世,比鋰離子電池更安全、更便宜 鋰離子電池以其高能量密度、高效率和低自放電率在可攜式電子產品和電動汽車中佔據主導地位,然而使用易燃的有機電解液所引起的嚴重安全問題阻礙了它的廣泛應用
  • 鋰離子電池電解液的相關製備方法
    作為鋰離子電池的「血液」——電解液,它承擔著傳導鋰離子的重任,是鋰離子電池獲得高能量密度、低阻抗的關鍵;本系列就從電解液的製作過程入手,開始逐步的展開,為大家介紹四大主材的製作過程。2,提純:對於使用的有機原料分別採取提純處理已達到鋰離子電池電解液使用的標準,在此,需要檢驗的項目有純度、水含量以及主含量等等。
  • 「兩高」水性可充電電池問世 比鋰離子電池更安全、更便宜
    鋰離子電池以其高能量密度、高效率和低自放電率在可攜式電子產品和電動汽車中佔據主導地位,然而使用易燃的有機電解液所引起的嚴重安全問題阻礙了它的廣泛應用。水性可充電電池由於使用了不可燃且價格低廉的水溶液(即用水作溶劑的溶液)作為電解液,不僅比鋰離子電池更安全、成本更低,也更容易製備。但由於受到水分解電壓的限制,目前水性可充電電池的能量密度遠低於鋰離子電池。
  • 周豪慎:去溶劑化鋰離子組成的新型液態電解液助力高比能鋰金屬電池
    儘管其他電解液體系如離子液體(IL)和固態電解質(SSE)在LIB體系中取得一定的進展,常規液體電解液仍然被認為是LIB最常用的電解液體系。由溶劑分子,陰離子以及溶劑化的鋰離子組成,常規液態電解液遵循典型的「溶劑化鋰離子」電解液構型,因而我們將其定義為「Li+溶劑化的電解液」。然而,這些常規的電解液(稀電解液或濃電解液)仍然存在一些固有的缺陷(與溶劑分子有關的電解液分解問題)。
  • 用護膚霜成分製成的電池電解質實現穩定且不易燃的水性鋰離子電池
    鋰離子電池的轉變:從易燃有機物到水溶液的轉變在手機、筆記本電腦等改善了我們日常生活的電子設備和小工具中,總能找到鋰離子電池。由於可充電的特性和穩定的能量輸出,它們已經成為這些電子產品的核心。儘管經過多年的研究,鋰離子電池仍然嚴重依賴有毒、易燃的有機電解液來發電,嚴重的安全隱患仍未得到解決。一些起火、爆炸事件表明,鋰離子電池的安全性還沒有得到保障。
  • 香港利用護膚霜成分制電解質 製成不易燃且安全的水系鋰離子電池
    此種電解質通常用於護膚霜,價格便宜、不易燃、毒性小、對環境友好,還能產生穩定電壓,供日常使用。(圖片來源:香港中文大學)手機、筆記本電腦,甚至電動汽車等電子設備和電子產品在很多方面改善了我們的日常生活,而它們都使用了鋰離子電池。由於鋰離子電池可以充電且能穩定地輸出能量,因而成為了此類產品的核心。
  • 【乾貨】高壓鋰離子電池電解液添加劑詳解及應用舉例
    此外,HUANG等分別研究了三氟甲基苯硫醚 (PTS)添加劑在高壓鋰離子電池室溫及高溫下的循環性能。理論計算數據與實驗結果分析得出,在循環過程中PTS 比溶劑分子優先被氧化,形成的SEI膜提高了電池在高電壓下的循環穩定性。此外,一些噻吩及其衍生物也被考慮作為高壓鋰離子電池添加劑使用,當加入這些添加劑後,會在正極表面形成聚合物膜,避免了電解液在高壓下的氧化分解。
  • 王春生&許康:高達63m超濃縮水系電解質助力鋰離子電池
    【研究背景】 目前商用鋰離子電池通常圍繞有機電解液構建,但是由於有機體系本徵的高揮發性、易燃等特性使得其存在高加工成本、低安全、非環境友好等問題。
  • 什麼樣的鋰離子電池電解液這麼牛?
    鋰離子電池的性能受到溫度的影響非常大,低溫下電解液的粘度上升,電導率下降,同時正負極材料的動力學特性也會出現明顯的降低,因此鋰離子電池低溫下性能會出現顯著的衰降。傳統的碳酸酯類溶劑電解液通常具有較低的燃點,因此採用傳統電解液會導致鋰離子電池通安全風險增加。不採用碳酸酯類溶劑是改善電解液安全性的有效途徑,但是為了形成良好的SEI膜,EC溶劑又是必須要添加的。
  • 鋰離子電池原理
    ,因為在所有這些涉及「鋰」的電池理論中,鋰離子電池原理是一條貫穿三者的紐帶,具有承前啟後的作用。由於作為正極材料的含鋰化合物及電解液不同,因而,有基於不同材料的鋰離子電池原理。近年來,人們常說的鋰聚合物電池是在液態鋰離子電池的基礎上發展而來的,它的出現使鋰電池進入到第三個階段,由於鋰聚合物電池是鋰離子電池電解液由液態改進到固態或者凝膠態的電池,因而,它的工作機理並沒有脫離鋰離子電池原理體系,而只是改進了鋰離子電池原理。