科研人員發現配體場反轉可調控生物有機金屬的反應活性
作者:
小柯機器人發布時間:2021/1/14 15:58:20
美國俄亥俄州立大學Hannah S. Shafaat團隊利用光譜學和計算研究了乙醯輔酶A合成酶的生化模型,發現配體場反轉可以作為控制生物有機金屬反應活性的機制。該研究於2021年1月8日發表於《美國化學會志》。
據了解,生物全球碳循環主要是通過微生物鎳酶的調節,包括一氧化碳脫氫酶(CODH),乙醯輔酶A合成酶(ACS)和甲基輔酶M還原酶(MCR)。這些體系被認為通過催化過程中有機金屬中間體,然而對這些物質的表徵仍然具有挑戰性。
課題組人員已經建立了一個鎳取代天青蛋白,基於該結構開發基於蛋白的酶中間體模型,包括ACS的有機金屬態。
在這項工作中,研究組使用脈衝EPR光譜和計算手段,報告了對S=1/2的Ni–CO以及Ni–CH3態的全面研究。儘管Ni-CO態顯示出常規的金屬-配體相互作用和經典的配體場,但甲基質子和鎳之間的Ni-CH3超精細相互作用表明距離比陰離子甲基配體所期望的距離更近。
相反,結構分析表明近平面甲基配體可以最好被描述為陽離子。與這一結論一致,Ni–CH3物種的前沿分子軌道顯示一個以配體為中心的LUMO,在金屬中心具有d9種群,而不是通過氧化加成生成的典型金屬-烷基物質的d7種群。
總體而言,這些數據支持存在Ni-CH3 Az物種的反向配體場構型,其中最低的空軌道以配體為中心,而不是帶正電的金屬。這些分析提供了在生物體系中存在反轉配體場的第一個證據。科研人員在非變性ACS蛋白的情境下討論了Ni–CO以及Ni–CH3物種的電子結構的功能相關性,並提出反轉配體場是調控ACS以及其他含巰基金屬酶反應活性的機制。
附:英文原文
Title: Ligand Field Inversion as a Mechanism to Gate Bioorganometallic Reactivity: Investigating a Biochemical Model of Acetyl CoA Synthase Using Spectroscopy and Computation
Author: Effie C. Kisgeropoulos, Anastasia C. Manesis, Hannah S. Shafaat
Issue&Volume: January 8, 2021
Abstract: The biological global carbon cycle is largely regulated through microbial nickel enzymes, including carbon monoxide dehydrogenase (CODH), acetyl coenzyme A synthase (ACS), and methyl coenzyme M reductase (MCR). These systems are suggested to utilize organometallic intermediates during catalysis, though characterization of these species has remained challenging. We have established a mutant of nickel-substituted azurin as a scaffold upon which to develop protein-based models of enzymatic intermediates, including the organometallic states of ACS. In this work, we report the comprehensive investigation of the S = 1/2 Ni–CO and Ni–CH3 states using pulsed EPR spectroscopy and computational techniques. While the Ni–CO state shows conventional metal–ligand interactions and a classical ligand field, the Ni–CH3 hyperfine interactions between the methyl protons and the nickel indicate a closer distance than would be expected for an anionic methyl ligand. Structural analysis instead suggests a near-planar methyl ligand that can be best described as cationic. Consistent with this conclusion, the frontier molecular orbitals of the Ni–CH3 species indicate a ligand-centered LUMO, with a d9 population on the metal center, rather than the d7 population expected for a typical metal–alkyl species generated by oxidative addition. Collectively, these data support the presence of an inverted ligand field configuration for the Ni–CH3 Az species, in which the lowest unoccupied orbital is centered on the ligands rather than the more electropositive metal. These analyses provide the first evidence for an inverted ligand field within a biological system. The functional relevance of the electronic structures of both the Ni–CO and Ni–CH3 species are discussed in the context of native ACS, and an inverted ligand field is proposed as a mechanism by which to gate reactivity both within ACS and in other thiolate-containing metalloenzymes.
DOI: 10.1021/jacs.0c10135
Source: https://pubs.acs.org/doi/10.1021/jacs.0c10135