拓撲絕緣體,這種近乎完美的表面傳導為電子電路帶來了新希望!

2020-12-05 博科園

本文參加百家號科學#了不起的前沿科技#系列徵文

拓撲絕緣體是一種優異的材料,這種近乎完美的表面傳導為快速有效的電子電路帶來了希望,儘管工程師們必須面對這樣一個事實,即這些材料內部實際上是浪費的空間。現在,賓夕法尼亞大學的研究人員展示了一種方法,可以在物理空間更加寶貴的領域實現這點。2005年賓夕法尼亞大學首次發現了拓撲絕緣體,首次展示了拓撲絕緣體利用其整個足跡的方法。

通過使用光子而不是電子,光子晶片有更快的數據傳輸速度和信息密集型應用。具有可即時重新定義邊緣的光子拓撲絕緣體將有助於解決足跡問題。能夠根據需要將這些「道路」彼此繞過,這意味著整個內部體積可以用於高效地構建數據鏈路。賓夕法尼亞大學工程和應用科學學院的研究人員首次建造並測試了這種設備,其研究發現並發表《科學》期刊上。這可能會對5G,甚至6G,手機網絡等大信息容量的應用產生很大影響,這可能是拓撲絕緣體的第一個實際應用。

構成通信網絡主幹的數據中心將呼叫、文本、電子郵件附件和流媒體電影路由到數以百萬計的蜂窩設備之間。但是,隨著流經這些數據中心的數據量增加,對能夠跟上需求高容量數據路由的需求也在增加。從電子轉換為光子將加速即將到來的信息爆炸的這一過程,但工程師必須首先設計一個全新的設備庫。所以,研究人員著手在給定晶片上最大化光子波導的複雜性,單個光子在從輸入到輸出過程中所採用的規定路徑。

光子晶片原型大約是250平方微米,並以橢圓形環的鑲嵌網格為特徵。通過用外部雷射「泵送」晶片,目標是改變單個環的光子特性,也能夠改變這些環中的哪些環構成波導邊界。其結果是可重構的拓撲絕緣體,改變不同方向的光子可以相互繞過。而且能夠讓來自多個數據包的光子同時通過晶片,就像複雜的高速公路立交橋一樣。可以定義邊緣,使光子可以從任何輸入埠傳輸到任何輸出埠,甚至一次到達多個輸出埠。

這意味著埠對佔地面積的比率比當前最先進的光子路由器和交換機至少高出兩個數量級。提高效率和速度並不是唯一優勢,該系統對於意外的缺陷也很穩定,例如,如果其中一個環被一粒灰塵損壞,這種損壞只是製造出一組新的邊緣,可以沿著這些邊緣發送光子。由於該系統需要晶片外雷射源來重新定義波導的形狀,因此研究系統還不夠小,不足以用於數據中心或其他商業應用,所以下一步將是以集成的方式建立快速重新配置方案。

博科園|研究/來自:賓夕法尼亞大學參考期刊《科學》DOI: 10.1364/OME.9.000095博科園|科學、科技、科研、科普

相關焦點

  • 電子只能在表面跑,竟因內部是絕緣體,但表面卻是完美的導體!
    除了有時不會外,電子會沿著某些不同尋常的晶體材料表面「賽跑」。普林斯頓大學的研究人員和合作者進行了兩項新研究,解釋了這種令人驚訝的行為來源,並繪製了恢復這些晶體導電性的路線,這些晶體因其在未來技術如包括量子計算機中的潛在用途而備受珍視,其研究發現發表在《科學》期刊上。
  • 拓撲絕緣體的一個新突破
    但有一種神奇的材料,它的內部是絕緣的,界面卻是可以導電的,這種材料被稱為拓撲絕緣體。自發現以來,拓撲絕緣體一直是凝聚態物理的研究熱點。 拓撲絕緣體的能帶示意圖。通常絕緣體的導帶(conduction band)與價帶(valence band)之間存在能隙,電子無法傳導,而在拓撲絕緣體的表面存在一些位於能隙間的量子態——拓撲表面態(topological surface state),允許電子傳導。
  • 拓撲絕緣體的邊緣無損耗傳導
    半金屬二碲化鎢的原子薄層沿著晶體邊緣的狹窄的一維通道無損傳導電,因此,這種材料是一種二階拓撲絕緣體。通過獲得這種行為的實驗證明,巴塞爾大學的物理學家們擴大了拓撲超導候選材料庫。這一發現已經發表在《Nano Letters》雜誌上。拓撲絕緣體代表了一個關鍵的研究領域,因為它們有可能被用作未來電子學中的超導體。
  • 物理史上首份「拓撲圖鑑」,鋪平科學家尋找拓撲絕緣體之路
    其實,Bernevig的方法就是把兩種認知模式結合了起來,從而提出了這套「拓撲圖鑑」。清華大學的物理學家李渭對此表示:「這絕對是一個更加有效的尋找新拓撲絕緣體的方法,我相信將會有更多的新材料問世。」圖丨該團隊為判定拓撲絕緣體提出的方法步驟儘管有了「拓撲圖鑑」,科學家仍需在在實驗室繼續探索。
  • 新拓撲絕緣體有可預測的最大能隙
    原標題:新拓撲絕緣體有可預測的最大能隙 美國猶他大學的研究人員創建出一種新的拓撲絕緣體,其可作為矽半導體頂部金屬層的特殊材料,將使超高速計算機在室溫下執行快速運算成為可能。該項研究成果刊登在近日美國《國家科學院學報》上。
  • 取出拓撲絕緣體表面態
    從emergent phenomena 角度看,拓撲量子物理是對稱性破缺導致相變之外到達物理基態的新路,其意義和價值自然會讓物理人去慢慢回味。只是,張首晟老師和這個領域的老少爺們幾乎總是在不厭其煩地告訴我們:TIs 在下一代自旋電子學和量子計算等新興應用領域有巨大潛力!以至於這個領域之外的人們都以為差不多要「萬事俱備、只欠東風」了。
  • 深入了解拓撲絕緣體:電子的自旋和動量緊密地聯繫在一起!
    一種稱為拓撲絕緣體的特定材料,部分類似於其中一種,部分類似於另一種,行為類似於表面上的導體和內部絕緣體。由於拓撲絕緣體具有獨特電子特性,以及它們在自旋電子器件中的潛在用途,甚至可以作為量子計算機的電晶體,美國能源部(DOE)Argonne國家實驗室的科學家們對研究這些材料中導電錶面電子兩種特性之間的特殊關係很感興趣。
  • 一種新的量子材料--拓撲絕緣體
    直到2005年,人們才發現不需要強磁場和低溫條件,僅僅依靠任何材料都具有的自旋軌道耦合效應,就可以實現類似於量子霍爾效應中的電子態,即量子自旋霍爾效應態或拓撲絕緣體態。這立刻引起了全球科學家界的重大關注。摩爾定律認為,由於技術的進步,每過18個月,集成電路上可容納的電晶體的數目會翻一番,性能也將提高一倍。
  • 中科院外籍院士:新材料拓撲絕緣體將進入應用階段
    圖說:新材料拓撲絕緣體將進入應用階段。網絡圖【新民晚報·新民網】主宰電子信息產業飛速發展幾十年的摩爾定律會失效嗎?昨天下午,市科協第十四屆學術年會暨第十一屆上海工程師論壇上,史丹福大學終身教授、美國科學院院士、中科院外籍院士張首晟在報告中預言,擁有「電子高速公路」的拓撲絕緣體將進入應用階段,為人類帶來新的半導體材料、能源材料,解決摩爾定律即將失效的難題。
  • 物理所關聯拓撲絕緣體和關聯拓撲晶體絕緣體研究獲進展
    拓撲絕緣體是當前凝聚態物理的研究熱點之一。這類材料不同於傳統的「金屬」和「絕緣體」,其體內為有能隙的絕緣態,而表面則是無能隙的金屬態。這種金屬表面態是由內在電子結構的拓撲性質決定的,受時間反演不變性的保護,因而受缺陷、雜質等外界影響較小。目前發現的和實驗研究的拓撲絕緣體大部分是半導體材料,電子間的關聯效應很小,理論分析較為簡單。
  • 拓撲絕緣體,為什麼內部是絕緣體不導電,只能在表面導電?
    博科園:本文為物理學類拓撲學領域或對表面在不同維度上如何表現的研究最主要的例子是拓撲絕緣體,它只在表面導電,而在內部完全絕緣。拓撲絕緣子的行為類似於金屬,即表面上的銀,但在內部,它的行為就像玻璃。這些屬性是使用電子的導電性或流動來定義的,這些電子描述了它們的運動是否有高速公路或路障。拓撲絕緣體未來應用的一個主要驅動因素是自旋電子器件領域。因為這些電子一致的自旋,所有電子都在表面流動時彼此對齊。
  • 拓撲絕緣體進入第四維空間
    ,被稱為拓撲絕緣體的材料也具有能夠在其表面導電的非凡特性。這種改變只能通過突然的,不連續的動作來實現,即插入或移除孔。類似的想法是拓撲絕緣體的基礎,但是這種情況下的轉換不涉及材料的空間特性。相反,它涉及在材料中流動的電子的波函數。這些包含實際上是一個結,因此無法將拓撲絕緣體平滑地轉換為普通絕緣體。相反,該材料必須首先成為金屬。這意味著即使材料的大部分是絕緣的,它與外界的物理邊界也可以導電。
  • 拓撲絕緣體實驗研究取得新進展
    原位角分辨光電子能譜測量顯示,這些薄膜具有本徵的絕緣體特徵。三維拓撲絕緣體的量子薄膜的實現為理論預言的量子反常霍爾效應、巨大熱電效應、激子凝聚等新奇量子現象的研究提供了基礎,是在拓撲絕緣體材料製備方面的一個重要進展。
  • 量子氣體中的神秘現象:邊緣導電的拓撲絕緣體!
    (圖片來源:Johan Jarnestad/瑞典皇家科學院)「拓撲相變和物質拓撲相」方面的開創性工作,為材料科學的研究帶來了革命性的影響以及新的機遇。拓撲絕緣體便是一個很好的例子。通常來說,根據導電性不同,材料可分為「導體」和「絕緣體」兩大類。
  • 量子計算的裡程碑:科學家實驗性觀測到拓撲絕緣體表面電流
    德國科學家實驗性的觀察到電流流經拓撲絕緣體晶體表面通道拓撲絕緣體是材料物理學裡的一個熱門話題。這些材料最顯著的特性便是它們既可作為導體也可作為絕緣體,他們的內部阻止電流通過而邊緣或表面則允許電荷的移動。
  • 物理所成功預言一類新拓撲絕緣體
    最近,中國科學院物理研究所/北京凝聚態物理國家實驗室(籌)姚裕貴研究組與美國橡樹嶺國家實驗室的肖笛、張振宇研究組等合作,成功預言了一類新的拓撲絕緣體。拓撲絕緣體作為一種新奇的量子物態,自問世以來就受到了廣泛的關注。與普通絕緣體相比,拓撲絕緣體同時具有絕緣體和導體雙重性,即在塊材內部是有帶隙的絕緣態,但在表面卻存在無帶隙的金屬表面態。
  • 拓撲雷射腔或為光電科學帶來變革
    Kante的團隊最新研製了一種基於拓撲絕緣體原理的新型雷射腔,通過在新型雷射腔上添加磁場,研究人員就可以自由控制雷射方向。該研究或將為光電科學帶來變革,並最終催生出全光子計算技術。一種新型的雷射腔(laser cavity)能夠被做成任何形狀,並通過磁場來改變光的流動,這個新技術是基於一項諾貝爾物理學獎的研究。
  • 科學家發現新的新的拓撲絕緣體—鉍
    Vergniory,發現了一類新的材料:高階拓撲絕緣體,相關研究成果近期已發表在了《自然物理學》雜誌上,題為《鉍中的高階拓撲》。理論物理學家首先預測了這些絕緣體的存在,這些絕緣體在晶體邊緣具有導電性能而不是在其表面上,並且具有導電性而不會消散的特性。 現在,這些新特性在鉍中通過實驗證明。
  • 中國科學家:光子無定形拓撲絕緣體
    拓撲絕緣體是一種內部絕緣、界面允許電荷移動的材料。在拓撲絕緣體的內部,電子能帶結構和常規的絕緣體相似,其費米能級位於導帶和價帶之間。在拓撲絕緣體的表面存在一些特殊的量子態,這些量子態位於塊體能帶結構的帶隙之中,從而允許導電。
  • 拓撲絕緣體簡介
    1982年,Thouless等人指出,σxy對系統自身變化的不敏感性來源於QHE體系的拓撲不變性,描述它的拓撲不變量稱為Chern 數 (用整數 n 表示),其能帶的拓撲性與一般絕緣體截然不同:QHE態中 n 為非零的整數,對應量子電導前的係數;普通絕緣體,n 為零。普通絕緣體和真空有相同的拓撲分類。