按照下圖的算法,似乎可以算出圓周率 等於4:
這個結論肯定是錯誤的,這篇文章就來仔細解釋下。
確實,隨著不斷彎折,圓外多邊形看上去越來越接近圓:
那為什麼文章開頭的結論是錯誤的呢?我們需要明白,在這個彎折過程中,圓外多邊形的周長和面積發生了不同的改變:
1.1 周長不變
將圓的右上角放大,可見外接正方形的邊無論折成多少個階梯,只要恰當地平移這些階梯,就可以還原出之前的正方形(動圖出處):
也就是說,在彎折過程中,圓外多邊形的周長始終為4:
更代數一點,可用數列 來表示彎折過程中外面多邊形的周長,很明顯該數列的極限為:
這是一個常數數列,該數列的極限為4,這說明彎折過程中圓外多邊形的周長是沒有發生變化的。
1.2 面積逼近
一開始,外接正方形和圓形的面積大概相差4個直角三角形,也就是下圖中藍色的四個直角三角形。因為圓的直徑為1,所以容易推出這四個直角三角形的面積之和為 ,也就是說外接正方形和圓形的面積大概相差 :
不斷地彎折圓外多邊形,可以算出這些直角三角形的和是在不斷減小的,也就是圓外多邊形和圓形的面積差在不斷減小:
這說明圓外多邊形的面積在不斷逼近圓形的面積。
1.3 科赫雪花
綜上,之所以得到錯誤的結論,是我們直覺上認為面積逼近的同時周長也會逼近。這個直覺是錯誤的,周長和面積並沒有絕對的對應關係。來看一個更極端的例子,像下面動圖一樣,從邊長為 的等邊三角形開始,可以生成類似於雪花的圖像,也稱為科赫雪花:
可以證明,科赫雪花的面積極限為 ,但周長的極限為無窮大,具體細節可以參考這裡。
下面來看一個類似的問題,這個問題可以幫助我們思考得更深一些。同樣是直徑為1的圓,在它的圓周上畫滿相切的圓:
如果交替地取這些圓在圓周內的部分和圓周外的部分,就構成了一條纏繞著圓周的連續曲線:
上圖中的曲線是由8個圓組成的,當然可以用更多的相切圓來構造該曲線。隨著相切圓的增加,該曲線的周長會持續縮小,但是到一定程度後周長就不再縮小了:
實際上,該曲線的周長會停留在該數值附近,並不會逼近圓的周長。背後到底是什麼原因,使得曲線周長沒有逼近圓的周長?
在微積分中學習過,在一定的條件下, 點附近的曲線可以用切線來近似(這是《單變量微積分》中的內容):
3.1 曲線的長度
假如要計算曲線在 之間的長度,可以將把 切成 份,對應的曲線也被分成了 份:
因為切線是對曲線的近似,所以可用每個部分的切線段長度來近似每個部分的曲線段:
進一步細分 ,也就是讓 變得更大,可以看到近似的效果會越來越好:
當 時,這些切線段的長度加起來就是曲線的長度。
3.2 錯誤的逼近
回頭來看一下,之前的例子是用折線或者曲線去逼近圓形的周長:
而不是用圓形的切線去逼近圓形的周長,這就是得出錯誤結論的原因。
3.3 為什麼是切線
那為什麼圓形的切線才能去逼近圓形的周長呢?這個問題可能需要用整個《單變量微積分》課程來回答。這裡就簡單說一下重點,可以證明,曲線的切線和曲線之間相差一個 高階 無窮小,也就是下圖標註的 :
上述說法反過來也是成立的:
在計算圓形周長的例子中,用來近似圓形周長的折線、曲線,它們只和圓形相差了一個無窮小。這裡不去深究具體的代數表達式,只需要知道, 高階 無窮小的意思就是比無窮小還要小。也就是說,圓形的切線是最接近圓形的,因為它們之間相差最小(高階無窮小)。所以,必須用切線才能成功逼近。
本文首發自:馬同學高等數學(ID:matongxue314)公眾號改版
「星標」我才更方便接收我的消息哦
只需三步
點擊圖片查看