New Phytologist | 破壞的肌動蛋白:一個新的感知病原菌侵染的「參與者」?

2021-02-28 植物微生物最前線

近日,New Phytologist在線發表了來自德國慕尼黑大學生物系Martin Janda教授領銜撰寫的題為:「Disrupted actin: a novel player in pathogen attack sensing?」的觀點文章,提出了肌動蛋白在植物與微生物互作中新的作

用!


 

肌動蛋白細胞骨架廣泛參與植物的免疫反應。大多數研究表明肌動蛋白細胞骨架的化學破壞增加了植物對病原菌侵染的敏感性。同樣,一些病原菌已將其用作毒力策略,並產生影響細胞骨架完整性的效應蛋白。這樣的效應蛋白要麼自身表現出肌動蛋白解聚活性,要麼阻止肌動蛋白聚合。這樣植物是否有可能識別肌動蛋白的狀態並發起反擊?最近,我們表明肌動蛋白絲的化學解聚可以通過水楊酸(SA)信號的特異性激活來觸發對病原菌侵染的抗性。這伴隨著幾種與防禦相關但與SA無關的作用(例如胼胝質的沉積,基因表達),依賴於囊泡運輸和磷脂代謝。這些數據表明肌動蛋白在植物-病原體相互作用中的作用比以前認為的更為複雜。這就提出了一個問題:植物是否已經進化出一種感知病理性肌動蛋白破壞的機制,最終觸發防禦反應。如果是,它的分子基礎是什麼?否則,為什麼肌動蛋白解聚只影響SA含量而不影響其他植物激素呢?在此,我們提出了肌動蛋白在植物-微生物相互作用中的最新模型,並提出了該領域未來的研究方向。

相關閱讀:

Plant Journal | CAMTA調節植物免疫的分子機制!

覺得好看,請點在看

相關焦點

  • Nature Communications | 擬南芥鈣依賴蛋白激酶調控肌動蛋白細胞骨架組織和免疫!
    模式觸發免疫和效應蛋白觸發免疫的分子成分和連接節點尚未完全了解(New Phytologist | 破壞的肌動蛋白:植物病原菌攻擊感應的新參與者?)。圖1:CPK3磷酸化擬南芥肌動蛋白解聚因子ADF4圖2:Ser-105和Ser-106對於ADF4與肌動蛋白的相互作用至關重要
  • 稻瘟病菌侵染新機制,一個激酶膨壓感受器被鑑定到!
    稻瘟病發生於世界各地,對全球的糧食安全是一個巨大的威脅。稻瘟病菌入侵宿主的方式比較獨特,是通過形成特殊的侵染結構——附著胞(appressorium)的方式入侵植物。附著胞可以通過積聚高濃度的甘油或其它多元醇產生膨壓(turgor),這種膨壓轉變為機械力後會導致附著胞基部產生纖細的入侵栓(penetration peg),從而破壞水稻葉片的表皮【1,2】。
  • 植物中的「叛逆者」——蛋白激酶SnRK2.8,協助病原菌侵染
    奕梵植物暴露在多種病原體中,為了應對各種病原菌的侵染,植物既依賴於被動防禦,也依賴於主動防禦。被動防禦主要是形成物理屏障來抵禦病原菌的侵染。主動防禦也被稱為誘導防禦,主要通過植物體內的相關受體蛋白觸發機體的一系列免疫反應,比如活性氧的產生,胼胝質的沉積,絲裂原活化蛋白激酶的激活等來限制病原菌的感染。同時,病原菌也會分泌效應分子 (蛋白) 進入植物細胞,來抑制植物的免疫應答,從而提高植物的易感性,促進病原菌的感染。
  • 前沿研究丨植物病原菌致病策略:利用效應子挾持寄主內質網
    病原菌在侵染植物時可以誘導內質網應激並觸發未摺疊蛋白反應,這一反應是一種保護性信號傳導途徑,在極端條件下會導致程序性細胞死亡。程序性細胞死亡是否有益於病原菌,取決於其發生的時間和方式以及病原菌是否適應於發生程序性細胞死亡的組織。
  • New Phytologist:發現大麗輪枝菌核定位效應分子跨界調節植物免疫...
    與絕大多數病原微生物一樣,該真菌依賴於其分泌的效應分子(effector,或效應蛋白)克服植物先天免疫,從而定殖寄主。而抗性植物往往能夠識別效應分子、激活更加強烈的植物免疫(effector-triggered immunity,或ETI),抑制病原菌的成功定殖。目前大麗輪枝菌中已發現能夠被植物識別、引起ETI的效應分子極少,並且尚未發現能夠直接進入植物細胞核調控免疫反應的效應因子。
  • Science:身體內部的「叛變」—被利用的肌動蛋白
    一項新的研究表明,一個與霍亂和其他疾病相關的毒素,不僅在高表達的蛋白質目標分子上發揮毒性,也能廢止一些稀缺分子的作用,但是用一種「欺騙性」的方式。這毒素將身體內的常見蛋白轉化為對其他基本和稀缺蛋白的「毒藥」,使免疫細胞失去作用。
  • 研究解析肌動蛋白7a晶體結構
    肌動蛋白7a是一類在細胞體內負責運輸的分子,它的功能對於人類聽力毛細胞和眼睛的發育尤為重要。肌動蛋白7a的基因變異可以導致嚴重的失聰和失明,這就是常見於新生嬰兒和兒童的Usher綜合症。在所有Usher1綜合症患者中,約一半是由肌動蛋白7a變異所引起的。 經過大批量遺傳學調查,已發現160餘種肌動蛋白7a基因變異會導致失聰。
  • Science:揭示CLIP-170微管加快肌動蛋白絲延長機制
    2016年5月22日/生物谷BIOON/--在一項新的研究中,來自美國布蘭迪斯大學的一個研究小組證實在細胞中發現的CLIP-170微管(即結合著CLIP-170蛋白的微管)緊密地結合到蛋白formin上,從而加快肌動蛋白絲延長。該小組將一種螢光蛋白加入到這種微管中以便更好地理解蛋白CLIP-170在肌動蛋白絲組裝中的作用。
  • 肌動蛋白纖維間聯繫及形成的分子機制
    細胞運動是一個周期性的過程,其中包括運動方向前端細胞部分的「突出」和後端細胞部分的「收縮」。肌動蛋白纖維的多聚化驅動細胞向前「突出」,而這些纖維的空間組織情況則決定「突出」結構的性狀。
  • Nature:肌動蛋白從G到F的構形變化
    肌動蛋白存在於幾乎所有真核細胞中,其形式有兩種:細絲狀F-肌動蛋白,它們驅動包括細胞運動和肌肉收縮在內的很多細胞過程;以及它們由之而產生的單體,即球形或G-肌動蛋白。在G-肌動蛋白向F-肌動蛋白轉變的過程中所發生的結構變化仍然不清楚,因為以前關於聚合物的模型一直在很大程度上以G-肌動蛋白的結構為依據。現在,F-肌動蛋白的結構已以高分辨被確定。
  • 南京農大作物疫病團隊聚焦「作物大戰病原菌」
    1月28日,南京農業大學作物疫病團隊在《分子植物》上同時在線發表兩篇論文,成果聚焦病原菌的致病因子,從不同角度對效應子攻擊植物以及植物的抗性機理進行深入探究,為涉及糧食安全的科技前沿問題先手把脈。南京農業大學植物保護學院院長、作物疫病研究團隊王源超教授介紹,疫病菌在致病的過程中分泌大量效應子(Effectors)破壞植物的抗病性,而植物則通過識別特定效應子產生抗性,因此效應子是病原菌致病和植物抗病的關鍵因素。此次發表的兩項成果為改良作物抗病性提供了重要的理論支撐和抗性資源。
  • 肌動蛋白絲控制植物細胞分裂時結構的形狀
    當肌動蛋白絲破裂時,通常向細胞中心收縮的成膜體會異常變寬(藍色箭頭),並且細胞板的形狀也會改變(橙色箭頭)。通常,細胞板從中心向邊緣擴散,但如果沒有肌動蛋白絲,點狀逐漸連接並形成細胞板。上圖和下圖的在分裂結束時間有所不同,因為當肌動蛋白絲被破壞時,細胞板的膨脹逐漸減慢。
  • 矛與盾之爭---病原菌通過抑制組蛋白乙醯化而調控宿主先天免疫反應
    景傑編者按:植物的先天免疫系統可以識別病原菌並啟動抗病基因的表達,但是在進化過程中,病原菌會演化出新的機制來逃避寄主免疫系統的監控。病原菌侵染常常會導致作物絕收,會造成非常大的經濟損失。這項工作由南京農業大學王源超和董莎萌課題組合作完成,他們發現大豆疫黴菌入侵大豆後,釋放的效應子PsAvh23和乙醯化酶複合體SAGA的ADA2亞基結合後,通過幹擾GCN5催化亞基乙醯化組蛋白H3K9而抑制抗病基因的表達,最終導致大豆被該菌感染。該研究揭示病原菌通過影響植物組蛋白乙醯化修飾而逃避植物先天免疫系統的防禦,為抗病植物的開發提供新的思路。
  • 斑馬魚肌動蛋白纖維造型和肌肉發育
    最近,水生所淡水生態與生物技術國家重點實驗室由桂建芳研究員主持的魚類發育遺傳學學科組的一項研究發現,一個肌管素相關的(myotubularin-related)磷酸酶Mtmr8與磷脂醯肌醇-3激酶(phosphatidylinositol-3-kinase)PI3K合作調節斑馬魚的肌動蛋白纖維造型和肌肉發育。
  • 南京大學發現植物根應答病原菌的新機制
    該免疫系統首先通過細胞質膜特異定位的受體,識別侵染時病原體或微生物特有組分或結構的分子,即病原相關分子模式(Pathogen-associated molecular patterns,PAMPs),激發自身細胞釋放內源性分子作為危險信號,啟動危險相關分子模式(Danger-associated molecular patterns, DAMPs)的免疫反應。
  • 南京農大作物疫病團隊聚焦「作物大戰病原菌」—新聞—科學網
    1月28日,南京農業大學作物疫病團隊在《分子植物》上同時在線發表兩篇論文,成果聚焦病原菌的致病因子,從不同角度對效應子攻擊植物以及植物的抗性機理進行深入探究,為涉及糧食安全的科技前沿問題先手把脈。 南京農業大學植物保護學院院長、作物疫病研究團隊王源超教授介紹,疫病菌在致病的過程中分泌大量效應子(Effectors)破壞植物的抗病性,而植物則通過識別特定效應子產生抗性,因此效應子是病原菌致病和植物抗病的關鍵因素。此次發表的兩項成果為改良作物抗病性提供了重要的理論支撐和抗性資源。
  • Cell:肌動蛋白環擴張對健康的胚胎至關重要
    2018年3月25日/生物谷BIOON/---在一項新的研究中,新加坡科技研究局(A*STAR)的Nicolas Plachta博士和澳大利亞新南威爾斯大學的Maté Biro博士及其同事們通過採用先進的顯微鏡技術和活的小鼠胚胎,觀察到肌動蛋白環(actin ring)在胚胎表面上形成,其中肌動蛋白是細胞骨架的一種主要組分。
  • Nature:EspFu激發宿主肌動蛋白機器的機制
    細菌效應子蛋白EspFu能誘導肌動蛋白基座的形成,後者是細菌粘附所需要的。本期Nature上兩篇相關的論文闡述了EspFu激發宿主肌動蛋白機器的機制。Sallee等人所做的一項生化分析表明,EspFu能激發宿主的WASP (Wiscott–Aldrich syndrome protein)肌動蛋白成核因子家族,這些成核因子正常情況下是由GTP酶Cdc42激發的。
  • 病原菌效應蛋白阻斷宿主炎症信號通路
    通過三型分泌系統分泌效應分子進入真核細胞內,進而阻斷或調節宿主關鍵信號轉導通路是許多病原菌普遍採用的致病機制。尋找效應分子在宿主細胞中的靶蛋白並闡明其作用於靶蛋白及相關信號通路的生物化學機理對了解病原菌致病機理和建立有效防治手段有著重要的意義。同時,這也可能促進我們對真核細胞本身信號轉導機制的進一步理解。