2019高考數學每日一練1007,函數的對稱性,判斷值的符號

2021-01-11 孫老師數學

2019高考數學每日一練1007,函數的對稱性,判斷值的符號。在高考數學卷中,考察函數對稱性的題中很多時候都是抽象函數,或者是抽象函數與基本函數結合的函數,這類題題意靈活多變,一般都有一定的難度;要順利解決函數對稱性的題目,需要對各種對稱有比較深的理解。本練習是有關點對稱,近年高考已多次考察。

第一種考慮方法:使用點對稱的性質;因為f(x)+f(4-x)=0,所以函數f(x)的圖像關於點(2,0)成中心對稱圖形,根據中心對稱圖形的性質,先確定出f(5)+f(-1)=0,再根據函數的單調性即可得出f(4)+f(-1)與0的大小。

第二種考慮方法:由於無法直接分析出f(4)+f(-1)的符號,所以可以令x取合適的值,代換掉f(-1)再考慮,詳細過程如下:

緊貼高考動向,精選習題,每日一練;跟著孫老師學數學,高考數學目標突破140分。點頁面上方「孫老師數學」進入「孫老師數學主頁」,然後點「關注」,可以查看更多課程!禁止轉載!

相關焦點

  • 2019高考數學每日一練1005,對數指數二次函數複合綜合題,求值域
    2019高考數學每日一練1005,對數指數二次函數複合綜合題,求值域。這是一道複合函數題,綜合了對數函數,指數函數,二次函數,題型是「由函數的定義域求值域」,這樣的題型是高考必考點,難度一般不會太高,只要學生平時熟練掌握了各種基本函數的性質,順利拿下這種題型沒有什麼問題。
  • 2018年高考數學函數求導真題練
    2018年高考數學函數求導真題練我們知道數學是這些學科中相對來說難度比較大的學科,同時他又是一個相對來說容易提分的學科。如果你稍微用點心,將數學學科中的基本公式都記憶和理解了,那麼你的數學成績將會得到一個理想的水平。
  • 高考數學複習實戰專題,導數求函數零點個數基礎題分析
    高考數學複習實戰專題,導數求函數零點個數基礎題分析。這節課講解利用導數知識確定函數零點個數的方法,題很簡單,但整個解題思路是解決零點問題的通用思路,熟練並理解這個解題思路將為後面順利解決各種難題打下良好的基礎,基礎不太過關的學生一定要認真研究。
  • 2019年湖北成人高考高起點《數學》考試大綱
    [導讀]湖北成人高考網權威發布《2019年湖北成人高考高起點《數學》考試大綱》,由胡老師整理髮布,更多2019年湖北成人高考高起點《數學》考試大綱 相關信息請訪問湖北成人高考湖北成人高考政策指南頻道
  • 高考數學知識點:函數導數不等式
    重點一  《函數、導數、不等式》  一、知識要點  1.映射:注意 ①第一個集合中的元素必須有象;②一對一,或多對一。;  6.函數的單調性  ⑴單調性的定義: 在區間 上是增(減)函數 當 時   ;  ⑵單調性的判定定義法:注意:一般要將式子 化為幾個因式作積或作商的形式,以利於判斷符號;②導數法(見導數部分);③複合函數法(見2 (2));④圖像法。
  • 三角函數不僅是特殊的函數,還是每年高考數學的香餑餑
    我們對全國各省市的高考數學試題進行分類整理,通過對這些試題的分析和研究,特別是對有關三角函數、三角恆等變換和解三角形的試題進行整理和分析,總結這部分試題的命題特點,發現高考對三角函數的考查,一方面注重考查基礎知識和基本方法,另一方面注重化歸與轉化的思想方法的滲透,注重整體思想的運用
  • 高考數學,2017全國卷導數大題分析,函數有兩個零點求參數範圍
    高考數學真題分析,2017全國卷1,導數大題,已知函數f(x)有兩個零點,求參數a的取值範圍。第一問,求函數f(x)的單調區間,這樣的問題不難,使用課本上講的三步法即可求解,過程如下;注釋:1、f '(x)的表達式中第二個小括號恆是正值;2、求單調區間的第二步是求方程f '(x)=0的解,e的x 方是正數,所以當a≤0時,方程無解,a>0時有一解,故要分類討論。
  • 高考數學複習實戰專題,導數壓軸題,表達式含有參數,求零點個數
    高考數學複習實戰專題,導數壓軸題,函數表達式含有參數,如何求函數的零點個數。由於函數表達式中的參數的值不是特定的值,所以會增加不小的難度,例如在求函數單調區間時參數取不同值時單調性不同,則就需要分類討論,在比較大小時也會因此而困難很多;歷年高考數學中的導數壓軸大題基本都是這類題型,所以一定要重視並熟練掌握。
  • 數學輔導之三角函數:熟練解答三類基本題型-高考,高考數學,高考...
    成都20中高三數學備課組 賈全英  高考試題中的三角函數題相對比較傳統,難度較低,位置靠前。因此,在複習過程中一要注重三角知識的基礎性,突出三角函數的圖象、周期性、單調性、奇偶性、對稱性等性質;二要對化簡、求值和最值等重點內容進行複習;三要注重三角知識的工具性,突出三角與代數、幾何、向量的綜合聯繫及三角知識的應用問題。
  • 高考數學0007期,三角函數定義重要題型匯總
    高考數學0007期,三角函數定義重要題型匯總;主要內容:角α的終邊過點P(-4k,3k)(k<0),求cosα的值;考察內容:1、利用單位圓判斷正弦、餘弦的大小;2、利用單位圓解三角函數不等式;3、根據三角函數定義判斷三角函數值的符號;4、根據三角函數定義求三角函數值。
  • 高中數學導數,確定函數零點個數,這麼好的解法你不學學嗎
    藉助導數的知識來求函數零點的個數是高考數學的熱點問題,這類問題相對比較簡單,一般分兩步進行,第一步:求函數的單調區間,第二步,分別判斷每一個單調區間兩個端點處的函數值的符號,如果符號相反,那麼函數在這個單調區間上有一個零點,如果符號相同,那麼函數在這個單調區間上沒有零點,如果有一個為0,要看單調區間是開區間還是閉區間
  • 如何利用導數求含有參數的函數的零點個數,高中數學疑難答疑
    如何利用導數求含有參數的函數的零點個數,高中數學疑難答疑精選。昨天晚上試行開放疑難答疑的信息發出後,這是第一位提出數學疑問的學生,從他(她)提出的問題來看,應該是一位高三學生,問題提得很好,這個問題也是高考數學考察的熱點,所以我毫不猶豫地決定答疑這位同學。
  • 高中數學,二次函數的圖像和性質大全及兩大類型題,高考常考內容
    冪函數中需要我們掌握的解析式類型:y=x、y=x^2、y=x^3、y=1/x、y=√x.而二次函數中是這些類型中比較重要的一塊知識點,也是高考常考的內容。所以二次函數的圖像和性質更需要我們掌握。圖一二次函數的基本性質:
  • 高考數學:函數必知兩域三性規律,快速解答圖像問題!學霸寶典!
    函數的兩域——定義域和值域,三性——單調性、奇偶性和對稱周期性是高考考查的重點。下面將圖像中有關的規律歸納如下。掌握這些規律可快速解答高考中的圖像類試題。1.函數的單調性函數的單調性是函數在定義域上的局部性質.
  • 特殊角三角函數值與符號正負
    三角恆等變換是高考考察熱點。往往需要二倍角公式、降冪公式、三角函數性質、誘導公式等的綜合運用。正弦函數、餘弦函數、正切函數的定義域、值域、周期性、奇偶性、單調性、對稱軸、對稱中心等要熟記。必要時,可利用三角函數線這個重要工具。它具有方便且靈活、準確的特點。輔助角公式是只含有一個角且只有一種三角函數的重要公式,這個公式應用面廣,而且頻繁。化簡時,要注意特殊角的三角函數值記憶的準確性,及公式中符號的正負。
  • 高考數學,導數極小值壓軸題,明知這麼考為何還中招
    高考數學,導數極小值壓軸題,明知這麼考為何還中招。題目內容:設f(x)=xlnx+2ax^2-(4a+1)x,a∈R;⑴令g(x)=f^'(x),求g(x)的單調區間;⑵已知f(x)在x=1處取得極小值,求a的取值範圍。
  • 吳國平:高考數學倒計時攻略,穩拿對數與對數函數
    高考馬上就到,很多考生都投入百分之兩百的精力,期望在人生最重要一次考試中能取得好成績。高考數學作為高考熱門科目,具有一定拉分作用,更是受到大家特別關注。如何在高考數學中取的好成績,那麼我們首先要了解高考數學的特點。
  • 吳國平:高考最後衝刺,拿到函數單調性與最值的分數
    說到函數,很多人都會感到頭痛,不僅難學,同時又是高考數學非常喜歡考的內容之一,是高考數學重點及熱點內容。如函數的單調性與最值是函數的兩個重要性質,也是高考的重點。此考點在考查同學們對函數的單調性與最值概念理解的基礎上,要求大家能夠選擇恰當的方法判斷函數的單調性、求函數的最值,著重考查靈活運用導數知識求解函數的單調性與最值,以及解決相關函數問題的能力,同時也滲透考查函數與方程等數學思想。因此,在高考來臨前夕,我們一起來研究分析函數的單調性與最值。
  • 高中數學知識點總結,函數的圖像與性質的高效利用詳解
    在歷年的高考中函數題目的難度可以說是最大的題型了,在選題題,填空題,解答題中通常都以壓軸題的位置來考察,函數的兩域——定義域和值域,三性——單調性、奇偶性和對稱性,周期性是歷年高考考查的重點。而函數在整個高中數學範圍內包含的也是很廣泛的,通常可以分為以下這幾類,三角函數,二元一次函數,一元二次,一元三次函數,在這其中經常考到的就是三角函數和一元二次函數。
  • 高考數學,找出三角函數值不相等的選項,心算出答案才是高手
    高考數學,找出三角函數值不相等的選項,心算出答案才是高手;主要內容:已知sin(α+β)=1,下列4個選項中,與其它3個選項不相等的是( ),A、sin(2α+β),B、cos(α+2β),C、sinβ,D、cosα。考查內容:誘導公式的使用。