高考數學複習實戰專題,導數求函數零點個數基礎題分析

2021-01-08 孫老師數學

高考數學複習實戰專題,導數求函數零點個數基礎題分析。這節課講解利用導數知識確定函數零點個數的方法,題很簡單,但整個解題思路是解決零點問題的通用思路,熟練並理解這個解題思路將為後面順利解決各種難題打下良好的基礎,基礎不太過關的學生一定要認真研究。

確定函數零點個數問題,第一步需要求出函數的單調區間,求單調區間比較簡單,就是咱們常用的三步法,過程如下:

函數f(x)有兩個單調區間,然後分別判斷每一個單調區間端點處的函數值的符號,如果兩個端點處的函數值符號相反,則函數在這個單調區間上有一個零點,符號相同,則沒有零點;函數f(x)的兩個單調區間上共有3個端點,下面判斷這3個端點處的函數值的符號,過程如下:

最後根據端點處函數值的符號就可以判斷出函數f(x)共有多少個零點。

初中、高中、基礎、提高、中考、高考、真題解析,專題精編;跟著孫老師學數學,高考數學目標突破140分。點頁面上方「孫老師數學」進入「孫老師數學主頁」,然後點「關注」,可以查看更多課程!本文禁止轉載!

相關焦點

  • 高考數學複習實戰專題,導數壓軸題,表達式含有參數,求零點個數
    高考數學複習實戰專題,導數壓軸題,函數表達式含有參數,如何求函數的零點個數。由於函數表達式中的參數的值不是特定的值,所以會增加不小的難度,例如在求函數單調區間時參數取不同值時單調性不同,則就需要分類討論,在比較大小時也會因此而困難很多;歷年高考數學中的導數壓軸大題基本都是這類題型,所以一定要重視並熟練掌握。
  • 衝刺2019年高考數學,典型例題分析56:學會求函數的導數
    已知函數f(x)=excosx-x.(1)求曲線y=f(x)在點(0,f(0))處的切線方程;(2)求函數f(x)在區間[0,π/2]上的最大值和最小值.解題反思:求參數的取值範圍是一類活躍在高考導數題中的熱點問題,求解策略一般有三種:(1)分離參數法;(2)分類討論法;(3)數形結合法。
  • 如何利用導數求含有參數的函數的零點個數,高中數學疑難答疑
    如何利用導數求含有參數的函數的零點個數,高中數學疑難答疑精選。昨天晚上試行開放疑難答疑的信息發出後,這是第一位提出數學疑問的學生,從他(她)提出的問題來看,應該是一位高三學生,問題提得很好,這個問題也是高考數學考察的熱點,所以我毫不猶豫地決定答疑這位同學。
  • 高考數學,2017全國卷導數大題分析,函數有兩個零點求參數範圍
    高考數學真題分析,2017全國卷1,導數大題,已知函數f(x)有兩個零點,求參數a的取值範圍。第一問,求函數f(x)的單調區間,這樣的問題不難,使用課本上講的三步法即可求解,過程如下;注釋:1、f '(x)的表達式中第二個小括號恆是正值;2、求單調區間的第二步是求方程f '(x)=0的解,e的x 方是正數,所以當a≤0時,方程無解,a>0時有一解,故要分類討論。
  • 高考數學:導數壓軸題——零點個數問題中應用零點定理的取值技巧
    近幾年導數壓軸題中常出現證明函數零點個數或已知零點個數求參數範圍的問題。解答這類題的思路主要是結合函數的單調性,應用函數零點定理找出使函數出現正、負的函數值。其中找出符合零點定理成立的恰當數值是順利攻克壓軸題的難點,下面通過高考經典試題講解取值的兩個技巧。
  • 高考數學丨「全國卷」壓軸解答題解題策略+58頁導數解題筆記
    ,凸顯了高考試題的選拔功能,一直是壓軸題的不二選擇老師在此篇文章整理了由潘越老師歸納的58頁導數解題筆記,分為6大專題,整理的都是今年最新題型篇幅有限,僅做部分展示,完整58頁word版可關注後,發送私信「學習」來免費領取。
  • 衝刺2018年高考數學, 典型例題分析8:導數求函數的單調性和極值
    設函數f(x)=(x2-2x)lnx+(a-1/2)x2+2(1-a)x+a.(Ⅰ)討論f(x)的單調性;(Ⅱ)當a<﹣2時,討論f(x)的零點個數.考點分析:利用導數研究函數的單調性;利用導數研究函數的極值.
  • 2018考研數學複習:由偏導數求原函數的方法分析
    在考研數學複習中,多元函數的偏導數是一個基本考點,每年都會考,考試大綱要求考生理解多元函數偏導數的概念,會求多元複合函數一階、二階偏導數,會求多元隱函數的偏導數。大家知道,在一元函數中,如果已知某函數的導數,而要求原函數,只要對其導數求不定積分即可,那麼在多元函數中,如果已知某函數的偏導數,而要求其原函數,我們應該如何計算呢?
  • 近十年高考數學導數大題分析,附2019備考建議
    全國卷高考導數題第一問淺析題型一:討論含有參數函數的單調性下面四道題都與lnx、e^x有關,與e^x結合的函數出現的更多一些。通過以上分析,我們發現含參數討論問題更多是與e^x及lnx結合,有分子二次函數型(參考定義域),因式分解型,二次求導型,單根單調型(如④)。希望這樣的分析能對高三複習有所幫助,搞定導數第一問就不要漏掉這幾種題型。題型二:含參數討論單調性求極值最值本題型在是在題型一基礎上又進一求極值最值,難度又進一步加大。
  • 高考數學導數壓軸大題,別擔心!做題「套路」會了,其實很簡單!
    可以說,這17分可不是好拿的,對數學計算能力稍微不強的學生,就可能失分了,想對高中數學導數完全掌握,其實也不難,今天老師用真實案例來分析下做數學導數的方法,在掌握導數前,我們必須對知識點進行掌握:導數的基本知識點(1)導數的概念:想學習好,概念不可少,概念是基礎,是做題訓練的前提工作,能夠清楚理解導數的幾何意義和物理意義,那麼導數就很容易懂了!
  • 高中數學複習之導數的解題思路,高中生看看吧!
    高中數學複習數學一直是讓很多同學頭疼的問題,而其中的導數部分更是讓一些同學思路不清,本次答疑過程中,眾多同學對導數的解題思路提出了問題,另有多名同學詢問了數學成績應該如何學習和提高,下面是對本次答疑的情況匯總,希望對同學們的數學,尤其是導數部分的學習有所幫助。
  • 2019高考數學總複習專題008,導數的幾何意義,曲線的切線問題
    高考數學實戰專題,根據導數的幾何意義解決曲線的切線問題。利用導數處理曲線的切線問題,一般都要先求切點或者設切點;然後根據以下兩點來進行解題:1.切點在切線上,又在曲線f(x)上;2.設切點為(x0,y0),則切線的斜率k=f'(x0)。
  • 高考數學,導數,求極值的常規、提高和壓軸題型,非常值得一練
    高考數學,導數,求極值的常規、提高和壓軸題型,非常值得一練。主要內容:求或討論函數的極值。考察知識:1、利用導數的知識求函數的極值的方法;2、導數綜合運算的能力;3、做題過程中遇到困難,靈活變通的能力。01、常規題型,求極值的通用解法。
  • 高中數學,導數求值域,檢驗基礎能力的最佳高考真題,都來測一測
    高考重在考察基礎,計算能力突出,基本方法紮實的學生更有可能在高考中取得好成績;有時候,即便高考只考計算和基本解題方法,很多學生還是敗下陣來,這節課以一道高考真題告訴大家,計算能力、解題方法和解題思維一樣重要,在平時的學習中都要重視。
  • 高中數學導數,確定函數零點個數,這麼好的解法你不學學嗎
    藉助導數的知識來求函數零點的個數是高考數學的熱點問題,這類問題相對比較簡單,一般分兩步進行,第一步:求函數的單調區間,第二步,分別判斷每一個單調區間兩個端點處的函數值的符號,如果符號相反,那麼函數在這個單調區間上有一個零點,如果符號相同,那麼函數在這個單調區間上沒有零點,如果有一個為0,要看單調區間是開區間還是閉區間
  • 導數求最值,同樣的題型,校考和高考的區別有多大
    高考數學,導數求最值,同樣的題型,校考和高考的區別有多大。題目內容:求函數f(x)的最大值和最小值。類似第1題這樣的求最值題目經常出現在學校平時的測驗中,雖然在計算上有點兒難度,但是整體上的解題思路和課本上講的沒多大區別;如果同樣是求最值的題目出現在高考考卷上,特別是導數大題,難度會大大增加,出題者會在解題過程中設置多個障礙,但是整體的求解思路不會脫離課本,就如本課程的第2題;大家可以自己先動手做一做,感受一下這兩道求最值的題目的區別。
  • 2011高考數學命題預測之函數與導數
    2011全國各地高考模擬試題大全 >>2011高考預 測卷一試題答案匯總(新課標版) >>  函數的觀點和思想方法貫穿整個高中數學的全過程,在近幾年的高考中, 函數類試題在試題中所佔分值一般為22---35分.一般為2個選擇題或2個填空題,1個解答題 ,而且常考常新。
  • 高考數學知識點:函數導數不等式
    ⑶導數的四則運算法則:  ⑷(理科)複合函數的導數:  ⑸導數的應用:  ①利用導數求切線:注意:ⅰ所給點是切點嗎?ⅱ所求的是"在"還是"過"該點的切線?  ②利用導數判斷函數單調性:  ⅰ 是增函數;ⅱ 為減函數;ⅲ  為常數;  ③利用導數求極值:ⅰ求導數 ;ⅱ求方程 的根;ⅲ列表得極值。  ④利用導數最大值與最小值:ⅰ求的極值;ⅱ求區間端點值(如果有);ⅲ得最值。
  • 高考數學,導數,求曲線切線方程的三種重要題型
    高考數學,導數,求曲線切線方程的三種重要題型;主要內容:已知曲線y=2/3 x^3-7x+2/3;求曲線在x=2處的切線方程;考察知識:1、求曲線在某點處的切線方程的解法;2、求曲線過某點的切線方程的解法;3、求兩條曲線的公切線方程的解法。
  • 高考數學,導數極小值壓軸題,明知這麼考為何還中招
    高考數學,導數極小值壓軸題,明知這麼考為何還中招。題目內容:設f(x)=xlnx+2ax^2-(4a+1)x,a∈R;⑴令g(x)=f^'(x),求g(x)的單調區間;⑵已知f(x)在x=1處取得極小值,求a的取值範圍。