網友提問:為什麼行星軌道都是橢圓的?為什麼太陽只集中在一個焦點上,那麼另一個焦點又是什麼呢?
答:這個問題總是困擾著我。簡短回答一下:這個問題從數學上超綱了,尤其是在第一年的物理學和微積分範圍外。事實上太陽在一個焦點是個再正常不過的事兒,更常見的是,另一個焦點什麼也沒有。
僅憑直覺很難回答為什麼星軌是橢圓的。實際上我也沒找到一個數學推理可以回答這個問題。所以,我把推導過程留在答案區裡。
答案區:重力一般被寫為:
你可以引入矢量符號重寫為:
這裡上面的點表示時間導數。為了保證標準:
C為「整數常量」,可以是任何一個數字。
在極坐標系下,你可以用半徑(遠離或靠近太陽的速度)及角度(轉動的速度)來重新定義速度。
L是這個問題中行星的角動量,是一個常數。雖然看起來有點蠢,但是為了預測,在推理中我們最好用1/R來代替R.
P和e的選擇看起來有一點武斷,不過這些有些歷史意義。P為半通徑,可以說是用來描述軌道大小的。E為離心率,描述了軌道的橢圓程度,e=0意味著軌道為圓形,在0-1隻見為橢圓,<=1則意味著軌道未閉合(這種情況實際上不能稱之為「軌道」)。比如,地球軌道的離心率為0.01671123,哈雷彗星的離心率為0.967.
D僅描述了橢圓軌道遠端的指向,實際上與形狀無關。
所以僅有最後一個方程是定義了橢圓的,在這個系統中,(0,0)正好在一個圓心,一下即證據:
一個焦點在(0,0)點的橢圓可以被描述為:
F即中心至焦點的距離
這些合在一起,便能看出橢圓的形狀(本例中即為太陽在(0,0)點)。
圖片說明:一個小天體在太空中沿者橢圓路徑的軌道繞著另一個大天體(像是行星繞著太陽),而這個大天體坐落在橢圓焦點上。
相關知識-克卜勒定律
在天文學中,克卜勒定律是用於描述行星環繞太陽運動的定律。
行星軌道是橢圓的,第一個星球的焦點在F1\F2,第二個星球的焦點在F1\F3。太陽位於焦點F1。
陰影部分A1、A2有相同的表面積,對於行星1而言環繞A1和A2所需的時間相同。
行星A1和A2繞軌道一圈的時間為固定比例。
行星軌道是橢圓的,太陽位於其一個焦點上。
過太陽與行星的連線將橢圓分割成相等的兩部分,且兩部分的繞行時間相同。
繞行時間的平方與長半徑的立方成比例。
圖片說明:在此圖中,右上象限的是橢圓軌道的重力井,在質量中心的重力位能井顯示出位能,軌道速度的動能以紅色顯示。當軌道上天體的速度減少時動動也會減少,同時距離會遵循克卜勒定律增加。
大多數的行星軌道都接近於圓形,只有通過細心觀察縝密計算才能知道軌道其實是橢圓的。火星軌道經計算是橢圓的。從這一點出發,克卜勒推斷太陽系其他行星的軌道也都是橢圓的。
哥白尼的日心說已經解釋了為何行星速度不同,在此基礎上,克卜勒用橢圓替代圓,將研究推進了一步。
圖片說明:地心說(上圖)與日心說(下圖)二者模型之比較
牛頓於1687年提出了更精確的解釋,提出了運動定律及萬有引力定律。
橢圓軌道在天文學或天體力學是軌道離心率小於1的克卜勒軌道,包括特別的離心率為零的圓軌道。在嚴格的意義上,它是一個離心率大於0且小於1(因此不包括圓軌道)的克卜勒軌道。在更廣泛的意義上,它是一個包括負能量的克卜勒軌道,這包括軌道離心率等於1的徑向橢圓軌道(拋物線軌道)。
參考資料
1.WJ百科全書
2.天文學名詞
3. askamathematician- The Physicist
如有相關內容侵權,請於三十日以內聯繫作者刪除
轉載還請取得授權,並注意保持完整性和註明出處