2014年3月,中國科學院北京基因組研究所基因組變異與精準生物醫學實驗室楊運桂研究組與清華大學生命科學學院戚益軍研究組合作研究發現,小非編碼RNA(diRNA)及其效應蛋白Ago2調控DNA同源重組修復重要因子Rad51在DNA雙鏈斷裂(double strand break, DSB)位點的招募,從而調節DNA修復的作用機制,相關論文在Cell Research在線發表。
DSB是真核生物基因組後果最嚴重的損傷,可以導致基因突變、基因組不穩定和細胞死亡,因此與包括癌症在內的多種疾病的發生密切相關。真核細胞已演化出了複雜的DSB修復機制,涉及到一系列感應蛋白、傳導蛋白和效應蛋白的協調作用。在該合作團隊此前的研究中(Cell ,2012),戚益軍研究組首次發現了植物細胞中存在一類特異性受DSB誘導並在DSB修復中起到重要作用的小RNA,diRNA (DSB-induced small RNA),隨後楊運桂研究組在哺乳動物細胞中確認這類特異性diRNA的存在。diRNA如何介導DSB修復尚不清楚。
科研人員利用生化和細胞生物學等手段,發現diRNA只調控DSB的同源重組(Homologous recombination)修復途徑,而不影響非同源末端連接(Non-homologous end-joining)修復途徑。這種特異性修復活性依賴於diRNA的效應蛋白Ago2。研究人員發現,Ago2可與同源重組修復重要因子Rad51形成複合物,並且Rad51在DSB位點的招募和同源重組修復活性取決於Ago2的催化活性及其結合小RNA的能力。DSB末端的加工,RPA和Mre11在單鏈DNA末端的裝載不受diRNA和Ago2調控,說明Ago2很可能通過直接調節Rad51的招募發揮作用。這些研究結果表明,Ago2可能在diRNA的指導下,促進Rad51在DNA雙鏈斷裂位點的招募或滯留,從而調控同源重組活性,高效修復DNA損傷。
該研究進一步揭示了小RNA在DNA雙鏈斷裂修復過程中的保守性和重要功能,為後續從小RNA和DNA修復角度開展對人類疾病如惡性腫瘤發生發展研究提供了新思路。
該研究得到了中國科學院、科技部和國家自然科學基金委的資助。 (生物谷Bioon.com)
生物谷推薦的英文摘要:
Cell Research doi: 10.1038/cr.2014.36
Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination
Min Gao1,4, Wei Wei2,3, Ming-Ming Li1,4, Yong-Sheng Wu1, Zhaoqing Ba2,3, Kang-Xuan Jin1,4, Miao-Miao Li1,4, You-Qi Liao1,4, Samir Adhikari1,4, Zechen Chong1, Ting Zhang1, Cai-Xia Guo1, Tie-shan Tang5, Bing-Tao Zhu6, Xing-Zhi Xu6, Niels Mailand7, Yun-Gui Yang1,4, Yijun Qi2,3 and Jannie M Rendtlew Danielsen1,7
DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR.