逆自旋霍爾效應實現磁電能量轉換

2020-11-23 電子工程專輯

隨著來自手機信號基地臺、行動裝置、Wi-Fi、藍牙與5G等產生越來越多的微波充斥全世界,很自然地,科學家開始探討將這些微波轉化成能量的方法。美國猶他大學(University of Utah)的科學家們發現了一種新方法,可在有機半導體中將微波能量轉化為電能。rnREETC-電子工程專輯

在實驗室中,研究人員證明了一種新效應——稱為逆自旋霍爾效應(Hall effect)——利用微波作為磁自旋的來源,將磁自旋流轉換成電流。這聽起來像是繞遠路走了,因為手機天線已經將微波轉化為電能了;然而,研究人員想證實的重點並不在於預覽某種應用,而是要證明逆自旋霍爾效應確實可被利用和控制,從而成為21世紀的工具。他們預測這種效應可在一般的電池、太陽能電池與行動裝置等應用派上用場。

猶他大學物理學家Valy Vardeny和Christoph Boehme(圖片來源:美國猶他大學,Lee Siegel攝)rnREETC-電子工程專輯

「我們從該設備收集的能量是透過微波輻射的方式輸送至該設備的——在這個意義上,能量轉換與天線的原理一樣,即將電磁輻射轉換成電流,」猶他大學教授Christoph Boehme在接受《EETimes》的專訪時表示。「不同的是,我們的設備所具有的實體機制完全不同。它並不是透過感應完成轉換,而是藉由逆自旋霍爾效應。事實上,澄清這樣的事實——我們看到的不是寄生效應,如電感應(例如簡單的天線效應)或其它已知的現象——正是這一研究的目的。」rnREETC-電子工程專輯

逆向霍爾效應最早是由蘇聯科學家在1984年證實,最近在半導體領域(2006年)和鐵磁性金屬領域(2013年)也有進一步的研究。其概念相對簡單:正如在原子圍繞傳導電流時引發磁自旋且自旋方向取決於電流方向一樣,若能引發圍繞導線周圍的原子發生磁自旋,導線內也應該會有電流。rnREETC-電子工程專輯

然而,概念雖簡單,可展示該概念的設備卻很複雜——為此,微波粉墨登場。逆自旋霍爾效應的早期實驗使用的是恆定微波——與微波爐內的一樣。遺憾的是,微波將設備的其餘部份烤焦了,使得實驗很快夭折,沒什麼成績。他們的失敗也為收集環境中的雜散微波留下陰影,雖然Boehme與其合作夥伴VALY Vardeny教授,都認為該想法有可取之處。rnREETC-電子工程專輯

「這是個很好的想法,它是否會成為逆自旋霍爾效應的應用還有待證明,」Boehme在回答我利用雜散微波發電的建議時表示。rnREETC-電子工程專輯

然而,他可能只是出於禮貌,因為他在實驗中使用脈衝微波消除過熱的問題。另外,他建議的應用聽起來比我想的更可行。

建構在一小片玻璃(頂部)上的組件能以逆自旋霍爾效應將磁自旋流轉換為電流。關鍵是一個夾層組件(底部),其中外部磁場和微波脈衝在鐵磁體上產生自旋波,然後在嵌入於有機半導體(聚合物)的銅電極上轉換為電流。 (來源:猶他大學,Kipp van Schooten和Dali Sun)rnREETC-電子工程專輯

「我們從其它自旋電子學應用(如硬碟讀取磁頭)了解到,自旋電子學可填補磁場到電流轉換技術中簡單感應不再有效的這塊空白——也即感應此時變得很不敏感、效率降低(以硬碟來說,就是讀取頭太小),」Boehme表示,「可以想像,能以非常低的成本,在軟性基板(基本上是種箔片)上產生納米尺寸的薄膜有機半導體層,並用其做出逆自旋霍爾效應組件,所以現在,還無法預測應用範圍。如果效率允許(我們現在還不知道!),那麼也可以想像,應可用其收集周圍環境的微波輻射,將收集到的能量用於其它應用。」rnREETC-電子工程專輯

一言以蔽之,逆自旋霍爾效應是可行的(如本文相關圖表和論文);它是自旋電子學的新應用,在某些方面豐富了業已不斷成長可用於收集磁自旋的自旋電子效應和設備工具箱。接下來,需要精確測量其效率並嘗試進行一些適當的應用,以便檢測逆自旋霍爾效應對於未來的有機半導體多麼有幫助。rnREETC-電子工程專輯

「我們研究的目標在於展示如何以一種『直接的方式』檢測逆自旋霍爾效應,在缺少或很少簡單微波感應效應和其它信號存在的條件下,顯示出強大且可直接觀察到的逆自旋霍爾效應,」Boehme告訴《EETimes》。「透過搭建設備和進行實驗,我們已將逆自旋霍爾效應的強度較之以前提高了100倍;同時也抑制了寄生效應。所以,現在我們的設備可以很輕易地觀察到這種效應。在不久的將來,我們(可能還有其它研究團體)將使用此進展對該效應進行真正詳細的研究。當然,這些研究的一部份將著眼於該效應到底能多有效地用於潛在技術應用上。」

研究人員在猶他大學的物理實驗室,透過為幾種有機半導體施加脈衝微波,展示逆自旋霍爾效應,這一效應可望用於未來的電池、太陽能電池和行動電子設備(來源:猶他大學,Christoph Boehme)rnREETC-電子工程專輯

因此,答案仍然懸而未決,而研究人員們只是提出了基本的配方。它將有賴於研究人員在未來的實驗中評估逆自旋霍爾效應在未來應用中的有效性。就個人而言,我希望這最終能解決來自通訊基地臺的「微波超載」,使人們不再受到微波的長期『烘烤』,但如果必須選擇的話,我會在較小規模的晶片應用下睹注,如用於未來超低功耗有機半導體的新自旋電子組件。rnREETC-電子工程專輯

研究人員證明了逆自旋霍爾效應可作用於三種有機半導體材料中:PEDOT、PSS以及3種富含鉑的有機聚合物,其中兩種是π共軛聚合物,另一種是球形碳-60分子(巴克球),後者被證明最有效。相關細節可參閱《在可調自旋軌道耦合有機半導體中由脈衝磁自旋流產生的逆自旋霍爾效應》(Inverse Spin Hall Effect from pulsed Spin Current in Organic Semiconductors with Tunable Spin-Orbit Coupling)一文。rnREETC-電子工程專輯

該研究由美國國家科學基金會(NSF)和猶他大學的NSF材料研究科學與工程中心提供贊助。其他參與這項研究者還包括猶他大學助理教授Dali Sun和Hans Malissa、博士後研究人員Kipp van Schooten和Chuang Zhang,以及博士候選人Marzieh Kavand和Matthew Groesbeck。rnREETC-電子工程專輯

本文授權編譯自EE Times,版權所有,謝絕轉載rnREETC-電子工程專輯


關注最前沿的電子設計資訊,請關注「電子工程專輯微信公眾號」。
rnREETC-電子工程專輯

rnREETC-電子工程專輯

相關焦點

  • 逆自旋霍爾效應 微波能量轉化為電能?
    在實驗室中,研究人員證明了一種新效應——稱為逆自旋霍爾效應(Hall effect)——利用微波作為磁自旋的來源,將磁自旋流轉換成電流。這聽起來像是繞遠路走了,因為手機天線已經將微波轉化為電能了;然而,研究人員想證實的重點並不在於預覽某種應用,而是要證明逆自旋霍爾效應確實可被利用和控制,從而成為21世紀的工具。他們預測這種效應可在一般的電池、太陽能電池與行動裝置等應用派上用場。
  • 電荷具有霍爾效應,你知道自旋也有霍爾效應嗎?
    自旋霍爾效應的原理自旋霍爾效應簡單說來就是在橫向電場的作用下,縱向產生自旋流的效應。這是由於自旋軌道的相互作用使電荷流和自旋流產生耦合(自旋和軌道間的耦合作用會對不同自旋的電子產生不同的偏轉作用),從而導致了自旋霍爾效應。
  • 什麼是「量子自旋霍爾效應」?
    鐵磁導體中的霍爾電阻由正比於磁場的正常霍爾效應部分和正比於材料磁化帶來的反常霍爾效應部分組成。量子反常霍爾效應指的是反常霍爾效應部分的量子化。量子自旋霍爾效應的發現極大地促進了量子反常霍爾效應的研究進程。前期的理論預言指出,量子反常霍爾效應能夠通過抑制HgTe系統中的一條自旋通道來實現。
  • 進展|YFeO/NiO/ YFeO/Pt磁子結中磁子非局域自旋霍爾磁電阻效應
    即一層重金屬中如有電流通過,由於自旋霍爾效應和界面處自旋極化電流與磁子流之間的轉換,可以激發出磁性絕緣體中的磁子流,並在另一側界面經由磁子流與自旋極化電流的逆轉換,變成另一側重金屬中的自旋流,最後通過逆自旋霍爾效應生成相反方向的拖拽電流信號[H. Wu, X.F. Han, et al. PRB 93 (2016) 060403(R)]。
  • 自旋軌道轉矩
    因此,物理學家不斷探究不同材料中自旋流和電荷流之間的轉換效率,希望發現影響轉換效率的物理機制,並找到轉換效率更高的材料。其中電荷流和自旋流之間轉換的兩個物理機制是自旋霍爾效應(Spin Hall Effect,SHE)和Edelstein 效應。一般材料中,電子是自旋簡併的,而在這些材料中,由於SOC的影響,電子運動過程中會受到SOC產生的等效磁場的作用。
  • 我國首次實現聲拓撲絕緣體的量子自旋霍爾效應
    拓撲絕緣體近年來引起社會極大關注,其電子能帶結構的拓撲性質使之具有獨特的輸運特徵,有望在自旋電子學、熱電以及量子信息領域獲得應用。同時,玻色子(光子和聲子)的拓撲態也引起了學術界的廣泛關注,對於光子,科學家相繼提出了光量子霍爾效應、光自旋量子霍爾效應和光拓撲絕緣體等理論。但由於聲子縱波偏振為零,空氣聲的拓撲態設計極為困難。
  • 南京大學科研團隊實現高階光學量子自旋霍爾效應
    高校科技進展獲悉,日前,南京大學陳延峰教授團隊、王振林教授團隊合作,首次理論提出並實驗證實了高階量子自旋霍爾效應,這是高階光子拓撲絕緣體方面取得的又一重大突破性研究成果。1879年,美國物理學家霍爾在研究金屬導電機制時發現了霍爾效應。
  • 南京大學科研團隊實現高階光學量子自旋霍爾效應
    高校科技進展獲悉,日前,南京大學陳延峰教授團隊、王振林教授團隊合作,首次理論提出並實驗證實了高階量子自旋霍爾效應,這是高階光子拓撲絕緣體方面取得的又一重大突破性研究成果。1879年,美國物理學家霍爾在研究金屬導電機制時發現了霍爾效應。
  • 聲學系統中的量子自旋霍爾效應
    在聲子晶體中實現雙重狄拉克點2. 拓撲相變過程演示3. 聲自旋相關的單向聲傳輸4. 受拓撲保護的聲傳輸前面的推文中已經向大家展示過了二維系統中的聲谷霍爾效應以及彈性波超材料中受拓撲保護的邊界態傳輸,本文以南京大學何程老師2016年的文章(C. He, et al.
  • 自旋霍爾效應研究新進展
    自旋電子學是近年來飛速發展的前沿學科領域之一自旋軌道耦合是影響常見的半導體材料自旋調控和弛豫的重要物理機理, 因此是半導體自旋電子學器件應用必須考慮的關鍵因素。近年來,國際上關於半導體中自旋軌道耦合引致的各種新奇的物理現象進行了研究並取得了許多重要的進展,如本徵自旋Hall效應等。這些研究為在半導體中產生自旋流提供了新的途徑,並為未來的全電操縱的自旋電子學器件提供了物理基礎。
  • 物理所預言矽烯中的量子自旋霍爾效應
    最近,中科院物理研究所/北京凝聚態物理國家實驗室(籌)姚裕貴研究員以及博士生劉鋮鋮、馮萬祥採用第一性原理,系統地研究了矽烯的晶體結構、穩定性、能帶拓撲和自旋軌道耦合打開的能隙,預言了在矽烯中可以實現量子自旋霍爾效應。   近幾年來,拓撲絕緣體的研究在世界範圍內飛速發展,並成為凝聚態物理研究中的一個熱點領域。
  • 光的量子自旋霍爾效應
    上一篇詳細討論了光子的自旋和軌道角動量,加上之前也解釋了電子的各種霍爾效應,而光子作為玻色子是自旋為1的相對論性粒子,自然地包含自旋軌道耦合作用
  • 西安交大在三維異質結構增強磁電耦合效應方面取得進展-西安交通...
    多鐵性異質結構往往能同時展現出優異的鐵性及各鐵性之間的耦合效應。磁電異質結具有將能量在磁場和電場之間自由轉換以及磁電轉換係數大等諸多優點,因此在傳感器、多態存儲器及射頻微波器件中具有廣泛的應用前景。特別是在磁電雙可調多頻帶微波器件方面既能實現寬頻段範圍內的磁場調節,也能實現小頻段範圍內的電場精確調節。
  • 磁電耦合:讓單分子磁體更「聽話」
    自從1993年首次發現第一個單分子磁體Mn12以來,對單分子磁體的磁電性能研究也不斷深入。近日,中科院物理研究所和南開大學的科研人員首次在一種含稀土離子鏑(Dy)的單分子磁體中,觀察到了顯著的磁—介電效應。日前,記者採訪了試驗者之一、南開大學化學系王玉霞博士,聽她講述了電場如何讓單分子磁體「聽話」並對其磁性調控的奇妙過程。
  • 自旋卡諾電子學研究進展
    3.1 自旋霍爾效應(SHE)和逆自旋霍爾效應(ISHE)自旋霍爾效應是指,當有一個縱向的電流時,在電子移動的過程中,電子受自旋軌道的耦合的影響,自旋向上和自旋向下的電子會向相反的方向偏轉,從而產生一個橫向的自旋流。
  • 量子自旋霍爾效應與拓撲絕緣體
    前面已經詳細講過BKT相變和和整數量子霍爾效應,其霍爾電導是量子化的,正比於Chern number或TKNN
  • 進展 | 磁性外爾體系巨反常霍爾效應的內/外稟雙機制設計
    反常霍爾效應是霍爾效應的各種物理版本中基礎而重要的一員,且與溫度梯度驅動的反常能斯特效應在物理根源上有著密切的關係。經過一個多世紀的研究,人們認識到反常霍爾效應的物理機制包括貝利曲率相關的內稟機制和雜質散射相關的外稟機制。作為動量空間中的贗磁場,貝利曲率是布洛赫電子的帶間相互作用。在對稱破缺的拓撲材料中,在自旋軌道耦合作用下,外爾節點及節線環能隙等能帶結構可以產生拓撲增強的貝利曲率。
  • 物理所在退相干對量子自旋霍爾效應的影響研究中取得新進展
    由強磁場引起的量子霍爾效應是第一類被發現的拓撲絕緣態。它的發現已對現代物理學產生了深遠的影響,並二次共四人從而獲得諾貝爾獎。最近幾年人們陸續預言並實驗發現幾種二維或三維材料在特定條件下會形成新的拓撲絕緣態。這類拓撲絕緣態由材料的強自旋軌道耦合引起,不破壞時間反演對稱性,被稱為Z2類拓撲絕緣態。量子自旋霍爾效應是最早被實驗證實的二維該類拓撲絕緣體。
  • 清華物理繫於浦研究組在「新型磁電耦合效應」方面取得重大進展
    清華物理繫於浦研究組在「新型磁電耦合效應」方面取得重大進展清華新聞網12月21日電 12月18日,清華大學物理繫於浦課題組在《自然·通訊》(Nature Communications)期刊上發表《利用氧離子型柵極實現磁電耦合》(「Electric field control of ferromagnetism
  • 量子反常霍爾效應
    自1988年開始,就不斷有理論物理學家提出各種方案,然而在實驗上沒有取得任何進展。2013年,由清華大學薛其坤院士領銜、清華大學物理系和中科院物理研究所組成的實驗團隊從實驗上首次觀測到量子反常霍爾效應。美國《科學》雜誌於2013年3月14日在線發表這一研究成果。量子霍爾效應,於1980年被德國科學家發現,是整個凝聚態物理領域中最重要、最基本的量子效應之一。它的應用前景非常廣泛。