形象直觀的解釋sinx無窮級數的幾何圖形

2021-01-10 電子通信和數學

前面我們講述了歐拉運用巧妙的數學技巧得到了三角函數sinx根式解的表達式,體現了深刻而完美的數學原理,這個公式是非常有意義的

sinx是有無窮多個線性因式的乘積組成,這些乘積會隨著因式的增多,越來越接近正弦波

第一個因式是X,在X很小時,sinX=X,所以首項X的圖形就是

接著添加第二線性因式,形狀就是一個圓錐曲線,即拋物線狀

添加第三個線性項,圖形就是一個三次曲線函數,正好有三個0點位置,如下圖示

接著添加第四個線性因式,就是一個四次曲線的函數圖形

添加第五個線性因式,結果就是一個五次函數圖形,它有5個0點位置,對應sinx=0的五個解

同理,我們繼續不斷的添加線性因式,隨著項數的增加,曲線會越來越接近sinx正弦函數的圖形

當增加到無窮多項時,就得到完美的正弦函數圖形

相關焦點

  • 形象直觀的幾何級數
    我們來研究一個最簡單的幾何級數:我們用圓的面積來表示這個無窮級數。從n = 0開始,所以第一個圓的面積為1:如果我們把每個圓都壓縮,使其面積縮小到原來的一半,這樣圓的總面積就是我們所求級數的總和將所有圓面積乘以1/2,它就等於所有圓的總面積減去1我們可以重新排列這個「等式」這樣就得到所有圓的總面積:上述方法可以使我們對級數進行推理,如下將考慮一個更為普遍的級數問題這裡唯一的約束是|
  • 有趣的數學奇蹟:用幾何原理描繪e^iθ的無窮級數,會發生什麼?
    如下圖形大家應該都很熟悉,i^1,i^2,i^3,i^4各對應的幾何原理就是旋轉90度,180度,270度,360度。就是這樣簡單的原理卻包含著豐富的數學知識。讓我們拭目以待。複數i與自然常數e很少分家,最經典的莫過於歐拉公式,它將複數推廣到一個更高的領域,但同樣逃不出旋轉這個概念,此時它可以表示圓周上的任意點接著我們看e^x的級數形式,我們將x=iθ代入,你會發現這個含有複數i的級數的幾何原理同樣表示一個旋轉,現在我們來分析首先該無窮級數的第一項永遠是1,所以在實軸上表示出來就是我們此處假設θ=1,第二項
  • 無窮級數的故事
    關於2點鐘:無窮級數Σ是求和公式,也是歐拉大神所創,後面這塊呢,其實之前在《有一點數學悖論:芝諾的烏龜》中提過,叫幾何級數,什麼叫級數呢?這貨跟幾何有什麼關係呢?幾何級數因為是無限相加,所以也叫無窮級數,如果「級數」這個詞看著彆扭,就理解為是無窮個數相加好了。既然是加法當然我們要求結果啦,求不出結果的式子其存在毫無意義,所以會有求不出結果的式子嗎?還真的有!
  • 奇妙的無窮級數
    無窮,但又很乖如上包含無窮項求和的式子稱為無窮級數,它們給我們對一些非常基本的數學概念(比如加和減)的理解帶來了衝擊。我們下一步要考察的無窮級數稱為幾何級數:再將其中一個正方形分成兩半,得到兩個面積為1/8的長方形,以此類推,直至無窮。總面積(我們每次剩下沒再分隔的正方形和長方形)和幾何級數所有項的和相同。因為這個總面積就是大正方形的面積,所以幾何級數應該就等於1。確實,數學家也同意這個結論。他們會說這個級數收斂於1。正式的收斂是通過數列的部分和來定義的:
  • 無窮級數:傅立葉級數原理概述
    數學中,無窮級數非常重要。它們廣泛用於計算器和計算機中。工程和科學中研究的許多現象本質上都是周期性的,例如。交流電路中的電流和電壓。可以通過傅立葉分析將這些周期函數分解為單個的組成成分(諧波)。這些特殊的三角函數的總和稱為傅立葉級數。傅立葉級數真的很有趣,因為它使用了您以前學過的許多數學技術,例如圖形,積分,微分,求和符號,三角學等。如果您遇到困難,希望這篇簡易的文章對你有所,首先了解下最基本的級數形式我們知道用泰勒級數如何將許多函數(如sin x,Inx,e^x等)重新表達為具有無限數量項的多項式。
  • 常數項無窮級數的性質
    所謂的常數項無窮級數,簡而言之,就是數列各項之和。可用下式表示常數項無窮級數:從常數項無窮級數表達式很自然就能延伸出這樣個問題:常數項無窮級數是否收斂?下方的極限將這個問題與數列極限聯繫起來:如果極限S存在,則數列收斂,否則數列發散。其中Sn為部分和數列,即數列的前n項之和。常數項無窮級數收斂的定義就是:如果極限S存在,則數列收斂。
  • 2021考研高數必考知識點:無窮級數
    無窮級數   ①掌握級數的基本性質及其級數收斂的必要條件,掌握幾何級數與p級數的收斂性;掌握比值審斂法,會用正項級數的比較與根值審斂法。   ②會用交錯級數的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關係。 ③會求冪級數的和函數以及數項級數的和,掌握冪級數收斂域的求法.
  • 歐拉是如何用根式解的形式表示方程sinx=0的
    如下sinx,歐拉和他的夥伴都思考了這個問題,這個無窮多項式就是著名的正弦麥克勞林級數對於正弦函數,從0開始,它有無窮多個0點位置所以我們的正弦公式應該是一個無窮的乘積但為了結果更加精確,正弦值應是這些乘積乘以某個非0 的常數c,也就是如下樣式讓我們繼續追隨歐拉的想像力,以確定這個常數c,歐拉用左邊的sinx除以X,如下就是sinx/x的函數圖形
  • 用優美的幾何原理解決sinx和arcsinx的求導問題
    我們的教科書上對三角函數中正弦餘弦的求導原理如下圖所示,這是最為嚴謹的方式之一,但今天我們避開教科書中的方法,用幾何方法更加形象直觀的闡述正弦,反正弦函數的求導原理正弦函數求導的幾何原理:首先作單位圓,sin(x+x)-sinx對應的是藍色線段,微元x正好對應紅色的弧長
  • 2021考研高數核心知識點:無窮級數
    1、掌握級數的基本性質及其級數收斂的必要條件,掌握幾何級數與p級數的收斂性;掌握比值審斂法,會用正項級數的比較與根值審斂法。   2、會用交錯級數的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關係。   3、會求冪級數的和函數以及數項級數的和,掌握冪級數收斂域的求法。
  • 泰勒級數經典之作:有關泰勒級數前幾項的幾何原理
    泰勒級數大家應該都很熟悉了,如下所示,它可以計算任意函數f(x)所有階導數在a處的值如下就是e^x在0附近時的無窮級數形式,它是最簡單的也是最有用的級數之一,它的導數就是其本身我們現在用幾何原理來解釋泰勒級數的前幾項,這是非常有趣的,可以很好地拓展我們的數學視野
  • 2020山東專升本考試:無窮級數
    2020山東專升本考試:無窮級數 有很大一批人因為數學差而對專升本望而卻步,其實數學沒有那麼可怕。而高數又是重中之重,下面帶大家一起梳理一下高數重要考點知識點。今天山東中公教育小編就整理分享:2020山東專升本考試:無窮級數的相關內容,希望對大家有所幫助。
  • 數學家是如何研究分數函數的無窮級數的
    萊昂哈德.歐拉,雅各布.伯努利 棣莫弗對無窮級數問題做了深入研究,他們都是處理無窮級數的高手。我們來看看數學家是如何處理無窮級數和函數之間的關係的。我們來看一個簡單的分數函數用一般的方法:連續進行除法運算可以把分數化解為關於Z的無窮級數,明顯是一個幾何級數我們也可以用比較係數法,令兩邊乘以分母得到展開得到比較0次冪的係數得到a=ɑA,那麼Z的其餘各次冪的係數都是0得到可以看出我們知道了任何一個係數都可以求出它後面的一個,例如求出了A,從它我們依次求出了
  • 究竟什麼才是數學新課標中的「幾何直觀」
    新課標給出的定義是:藉助幾何直觀和空間想像感知事物的形態與變化,利用空間形式特別是圖形,理解和解決數學問題的素養。其具體涉及:利用空間形式認識事物的位置關係、形態變化與運動規律;利用圖形描述、分析數學問題;建立形和數的聯繫;構建數學問題的直觀模型,摸索解決問題的思路。從直觀想像的定義來看,該素養主要包括兩個方面:幾何直觀和空間想像。
  • 無窮級數之級數的性質
    重積分和曲線積分、曲面積分相親相愛,過著「楊過和小龍女」一樣的神仙般的時光歲月,挺好的,但突然來了個級數,非和他們在一起,級數真綠茶。級數「給爺爪巴」,口區!上篇文章寫到,直接利用級數收斂的定義去求級數的和。但這麼做,一般來說是比較困難的,而級數的主要問題是判別收斂性.
  • 用傅立葉級數作畫:可以畫出任意你想要的圖形
    傅立葉級數和傅立葉變換的出現大大推進了數學的發展和科技時代的變革,學過高等數學或微積分的夥伴,對下面的圖像和公式應該很熟悉,這就是傅立葉級數的指數形式我們還可以根據傅立葉級數,得到萊布尼茲公式,以及其他很多級數形式傅立葉級數的指數形式,其實就是圓的旋轉疊加,在前一篇文章我們已經介紹過了
  • 歐拉和拉格朗日筆下的三角級數以及重要的等式關係
    偉大的數學家歐拉從最一般的三角函數sinx^2+cosx^2=1公式出發,得到著名的棣莫弗定理以及正弦和餘弦的無窮級數,方法簡單明了直觀,接著法國數學家拉格朗日運用三角學中的複數性質,又得到一些重要級數等式,優美的思路值得大家學習借鑑。
  • 無窮級數的概念和性質
    無窮級數是高等數學的一個重要組成部分,它是表示函數研究函數的性質以及進行數值計算的一種工具。本章先討論常數項級數,介紹無窮級數的一些基本內容,然後討論函數項級數,著重討論如何將函數展開成冪級數和三角級數的問題。
  • 無窮級數,常微分方程,指數級數,冪級數求和.
    #無窮級數#冪級數求和函數,sum(n,0,inf)(x^(3n+1)/(3n+1)!),常微分方程同理可得特徵方程,指數級數自造自解...  http://t.cn/A6bQ999K。。微博@海離薇。關注我就屏蔽我吧。。。。#數學分析#HLWRC高數不定積分求導驗證,鄉下話niaiwaha(你愛蛙哈)=聽來=梨比=隨便他。
  • 無窮級數冪級數求和函數2.
    #無窮級數#冪級數求和函數sum(n,0,infinity)((-1)^n)(x^n)/(2n+1)分段函數分三段,arctan√x/sqrt(x)先導後積,ln((1+x)/(1-x))牛頓萊布尼茨公式。#數學分析#Σx^(2n)/(2n)!家鄉話搞出微分方程特解,哇噻我找到了chx的導數是shx...  http://t.cn/A6bW8LK5 ​​​。關注微博就屏蔽我吧@海離薇。。