綜合培優:圓錐曲線定值問題,把握有關要領,助你輕鬆地解答題目

2021-01-11 高考自主學習課堂

溫馨提示:學通本專題前10講,可助你更高效、穩妥地拿下圓錐曲線有關的高考22分!

平時練習和考試中,還常見到圓錐曲線有關的定值問題。這類問題的求解有什麼特點呢?

下面我們來詳細地給出兩道例題的解答,並結合前10將所述內容來講解其有關特點。

例1. 在平面直角坐標系xoy中,F是橢圓Γ:x^2/a^2 +y^2/b^2 =1(a>b>0)的右焦點,已知點A(0,-2)與橢圓左頂點關於直線y=x對稱,且直線AF的斜率為2√3/3。

(1)求橢圓Γ的方程;

解:依題意,如下圖,

講解:

① 本題用向量法求解也很方便。事實上,二者的思路幾乎一樣,只是表達方式不一樣而已。

就本題而言,向量法略勝半籌,主要勝在表達的簡潔上——向量不需要論證,因其已經體現在關係式中;而幾何法的過程稍長些(因一些必要的論證說明)。

② 本題很好地示例了前10講所述的解題思路、題設(變化)類型以及解答運算有關技巧的應用與意義,不熟悉這些內容的同學,可參見第7-9講的內容。

相關焦點

  • 高考圓錐曲線選填題,把握解題要領,助你解得速度更快、失誤更少
    溫馨提示:本號原創之導數和圓錐曲線專題課程,可助您更輕鬆、高效地攻克高考數學最難的導數和圓錐曲線綜合應用壓軸題。具有系統專業、思路清晰、圖文並茂、易學易懂等突出特點,眼見為實!圓錐曲線應用模型在進入主題之前,我們先來看一下圓錐曲線應用模型(如下圖):無論是圓錐曲線應用有關高考選填題還是壓軸大題,其解題思路的的落足點必定是圓錐曲線的雙基——本專題前5講已系統地歸納和總結了雙基有關知識要點和常用技能
  • 綜合培優:抓住集合有關綜合應用題型的關鍵特徵,可助你舉一反三
    溫馨提示:本號的課程(即包含但不限於這一講課程)不僅會給出詳細的解答過程,還聚焦於講解與理解題目意圖、轉化/分解問題、確定解題思路、組織解答過程等有關的方法與技巧,以幫助同學們不斷提升綜合能力,進而持續有效、穩步地提高成績。
  • 高中數學:圓錐曲線「五大方面」最值問題,有效提分!
    高中數學圓錐曲線涉及了很多難點問題,包括最值與定值問題、求參數範圍問題、存在與對稱性問題。其中圓錐曲線的最值與定值問題一直以來都是高考中的一大難點,考查的知識點不是簡單的圓錐曲線的定義,還要綜合代數、平面幾何、三角函數等相關知識,這就大大提高了圓錐曲線解題的難度。
  • 很多人說:誰會圓錐曲線,高考數學必定是學霸
    有人說,如果不會解圓錐曲線相關問題,高考數學就不可能得高分。這句話看似誇張的話,其實一點也不誇張,除了說明圓錐曲線相關知識內容的重要性之外,更強調此類題型一直是高考數學必考的重點和熱點。填空題一般是針對性地考查橢圓、雙曲線、拋物線的定義、標準方程和簡單幾何性質及其應用,主要針對圓錐曲線本身,綜合性較小,試題的難度一般不大。
  • 高考數學突破140分:圓錐曲線中的定值問題的命題規律和解題技巧
    圓錐曲線中的定點、定值問題是高考中的常考題型,以解答題為主,難度一般較大,注重方程思想、數形結合思想、分類討論思想的應用.主要的命題角度有:(1)證明直線、圓過定點;(2)求代數式為定值、求點到直線的距離為定值、求線段的長度為定值、與曲線上的動點有關的定值問題.
  • 阿波羅尼奧斯---圓錐曲線的集大成者
    出場人物:學             生: 某某高中生阿波羅尼奧斯:古希臘數學家,圓錐曲線集大成者笛      卡    爾:17世紀法國數學家,近代科學鼻祖張      文    宏:大家認識的啊,友情客串故   事   背 景:在高中數學裡,圓錐曲線解答題以其綜合性
  • 備戰2018數學高考|最新模擬題選講(圓錐曲線定點定值、存在性)
    先前分享了在高考中有關圓錐曲線的選擇題、填空題,它的考試內容一般是涉及離心率及雙曲線漸近線知識,這個專題分享的是有關圓錐曲線的解答題,一般考察的是直線與圓錐曲線的關係,涉及定點、定值及存在性問題,每年必考題型,應引起重視。
  • 點差法在圓錐曲線大題中的兩類應用
    在圓錐曲線中點弦問題中我們講到過點差法,當時除了給出常規的點差法之外還給出了用導數求中點弦斜率的做法,在此不再回顧。點差法的應用一般伴隨著中點以及斜率的出現,這是兩個使用點差法比較明顯的信號,但是也有一些題目雖然條件比較隱晦,雖然沒有明顯涉及中點和斜率問題,實際上也是可以利用點差法求中點或者斜率問題,除此之外,點差法並非只能應用於此,例如在定比分點問題中如果弦長的兩端點橫縱坐標滿足相等的倍數關係,此時也可以利用點差法做一次整體的帶入,這種題目經常應用在於圓錐曲線與向量結合求參數範圍的題目中,今天以兩個題目舉例說明點差法的兩種不同的用法
  • 2016高考數學複習方法總結:高中數學--圓錐曲線
    圓錐曲線,在高考中一直作為壓軸大題的形式出現,其實圓錐曲線很簡單,那麼從哪些地方下手才能輕鬆學好圓錐曲線呢?本期超級學團的學霸老師的主題就是:圓錐曲線。   圓錐曲線之所以叫做圓錐曲線,是因為它是從圓錐上截出來的。古希臘數學家阿波羅尼採用平面切割圓錐的方法來研究這幾種曲線。
  • 結構化,梳理與歸納拋物線方程基礎知識,助你無盲區、高效地學習
    溫馨提示:本講屬於高中數學圓錐曲線專題——是繼本號原創之導數專題之後,又一個在公眾平臺上發布的、專門面向高考壓軸大題的精品課程!前面兩講已系統歸納了橢圓方程和雙曲線方程有關基礎知識,下面將繼續系統地歸納拋物線方程有關基礎知識。
  • 直線與圓錐曲線位置關係有關技能,助你有效攻克相關高考高頻題型
    溫馨提示:本講屬於高中數學圓錐曲線專題——是繼本號原創之導數專題之後,又一個在公眾平臺上發布的、用於攻克高考壓軸大題的精品課程!在本講開始之前,先來看一下近五年高考中圓錐曲線有關題目的命題特點。所以,熟練、正確地理解和運用直線與圓錐曲線位置關係有關必備知識與技能,是有效攻克高考圓錐曲線有關題目(20+分)的先決條件!
  • 吳國平:學會運用數形結合思想來解決直線與圓錐綜合問題
    數學學習更是如此,如果我們對知識點掌握不深,理解不夠透徹,不要說用知識點去解決問題,可能連針對性訓練都過關不了。如直線與圓錐曲線相結合的綜合問題,一直是高考數學中的重點和必考內容。大部分情況下,直線與圓錐曲線綜合問題都是作為高考壓軸題的形式出現。因此,如果你想在高考數學中把該類試題的分數拿到手,那麼你就必須對直線和圓錐曲線各個知識點非常熟悉。
  • 高中數學圓錐曲線常考題型和技巧+90道突破高分必做題,含答案
    考查的選擇題、填空題均屬易、中等題,且解答題未必會有大難點。所以與相關知識的聯繫加深加大(如向量、函數、方程、不等式等),將會是今後圓錐曲線的出題重心。圓錐曲線部分19個知識點,一般在考試的時候半數以上都會考到,而且側重於對直線、圓、圓錐曲線知識點的考察。想要搞定圓錐曲線,一定要有數形結合的思想,這樣能夠快速得到答案,比硬算快多了。
  • 昭通2020名師助考55丨把握物理基礎知識
    高中物理知識常考點 1.勻變速直線(曲線)運動「勻變速直線運動」考查的重點是勻變速直線運動的規律和v-t圖。考試大綱在能力要求中提出:「必要時能運用幾何圖形、函數圖像進行表達、分析」。因此,圖像問題一直佔有一定的比例。在歷年的高考題中,考核學生對直線運動以及曲線運動(平拋運動圓周運動)的理解有著充分的體現。
  • 是高效求解圓錐曲線有關選填題、壓軸大題的立足點
    溫馨提示:本號原創之導數和圓錐曲線專題課程,可助您更輕鬆、高效地攻克高考數學最難的導數和圓錐曲線綜合應用壓軸題。具有系統專業、思路清晰、圖文並茂、易學易懂等突出特點,眼見為實!1.2) 交點坐標有關問題在圓錐曲線與直線、圓、其它圓錐曲線或函數模型的綜合應用中,所求問題常常直接或間接地與它們的交點有關。
  • 高考圓錐曲線方程,知識點與真題分析,吃透這16頁數學140+
    來自高三黨晶晶:學姐,能不能來一篇圓錐曲線這方面的講解呀?這一章節是選修裡最難的一部分了,讓人頭疼。學姐還記得之前數學老師說過的一句話:學不會圓錐曲線,高考數學的分數就不會太高!的確是這樣的,高考數學中圓錐曲線的題型一般以填空題,選擇題,解答題的形式出現,足以看出在高考卷中的佔比之多。
  • 導數給出曲線切線方程,如何求參數的值,不同的題目一樣的套路
    高中數學,導數,給出曲線切線方程,如何求參數的值,不同的題目一樣的套路。題目內容:若曲線y=x^3+ax+b在點(0,b)處的切線方程為x-y+1=0,求ab的值;已知a∈R,設函數f(x)=x-alnx的圖象在x=1處的切線為L:y=ax+b,求a、b的值。
  • 綜合培優:坐標表示及運算,可助你輕鬆求解向量與解析幾何綜合題
    前面已講過的平面向量與平面幾何綜合可能是最多見的應用題型。除了前面重點講述的三角形有關綜合問題,向量還可與其它平面幾何問題綜合,例如:除了平面幾何,平面向量還可與解析幾何問題綜合。本文要重點歸納和講解這類題型的解題方法。
  • 滿分示範課:構建高考解答題中圓錐曲線問題解答模板
    【命題透視】 圓錐曲線中的定點與定值、最值與範圍問題是高考的熱點,主要以解答題的形式呈現,往往作為考題的壓軸題之一,以橢圓或拋物線為背景,尤其是與條件或結論相關存在性開放問題,對考生的代數恆等變形能力、計算能力有較高要求.