微型化、集成化和智能化,是現代科技發展的一個重要趨勢。伴隨著微機電加工系統(MEMS)技術的發展,電子計算機已由當年的「龐然大物」演變成由一個個微小的電路集成晶片組成的便攜系統,甚至是一部微型的智慧型手機。
MEMS技術全稱Micro Electromechanical System,MEMS設想是由諾貝爾物理學獎獲得者Richard Feynman教授於1959年提出,其基本概念是用半導體技術,將現實生活中的機械系統微
型化,形成微型電子機械系統,簡稱微機電系統。
1962年全球第一款微型壓力傳感器面世,這一創新產品後來被應用於汽車安全(輪胎壓力檢測)
和醫療(有創血壓計),開啟了MEMS時代。今天MEMS技術在軍事、航天航空,生物醫藥、工
業交通及消費領域扮演核心技術的角色,智慧型手機中就嵌入了多個MEMS晶片,如麥克風,加速
度計,GPS定位等。
MEMS被廣泛應用於軍事與航空航天、工業與交通、通訊、生物醫藥、消費市場 。
微流控晶片(MicrofluidicChip) ,又稱為晶片實驗室(Lab-on-a-Chip)或生物 晶片。是利用MEMS技術將一個大型實驗室系統縮微在一個玻璃或塑料基板上,從而複製複雜的生物學和化學反應全過程,快速自動地完成實驗。其特徵是在微米級尺度構造出容納流體的通道、反應室和其它功能 部件,操控微米體積的流體在微小空間中的運動過程,從而構建完整的化學或生物實驗室。
這一技術將給基因、免疫、微生物和臨床化學等診斷領域帶來顛覆性突破,使威脅人類健康的諸多疾病如癌症、心腦血管疾病的早期診斷和預防成為可能。生物晶片與生物靶向藥物的結合,推動臨床醫學全面走向個性化醫療診療。
隨著微流控晶片技術的逐漸展開及微分析技術的需求,晶片構型設計越加豐富,出現了一系列形式各異、具有多種微通道網絡結構的晶片構型。如電泳晶片分離通道的網絡形狀主要有:直線型、螺旋型、彎曲蛇形、多邊形、摺疊形等。由於生化分析的複雜性和多樣性需求,微流控晶片技術的發展趨於組合化和集成化,經常需在一塊晶片基片上集成多種功能單元,如化學反應器、生物反應器、過濾裝置等以進行多種樣品的分析檢測,以用於DNA測序和突變點檢測,胺基酸、蛋白質、細胞檢測和藥物篩選等。
基於高通量快速分離的需要,多通道陣列並行操作是微流控晶片的發展趨勢,晶片通道數量已從最初的12通道、96通道,發展到384通道。
微流控晶片通過微細加工技術集成各種不同功能的單元,如微反應池、微泵、微閥、檢測單元等。微通道加工技術與以矽材料二維和淺深度加工為主的集成電路晶片不同。微流控晶片微通道的兩個重要指標是深寬比和微通道界面形狀。
深寬比指在基片上形成的微結構的深度特徵與寬度特徵之比,高深寬比結構加工難度較大。對於直接加工法,形狀特徵與腐蝕的方向性有關,即各向同性或各向異性會形成不同的幾何形貌特徵;對於複製加工方法,如熱模壓和模塑法等,微通道幾何形狀直接與模板形狀及加工工藝有關。
1、微流控晶片的材料
微流控晶片結構設計選取材料時考慮的主要因素是:
① 優良的加工性能,便於大批量生產以降低費用。
② 生物相容性或化學惰性,不影響分析試劑、藥物的化學性質;
③ 散熱和絕緣性;
④ 良好的光透性能,適應光學檢測的要求。
另外還要考慮材料的電滲流特性、表面可修飾性及可密封性能等。
到目前為止,製作微流控晶片的材料主要有:矽、玻璃、石英、高聚物、陶瓷、紙等。選擇合適的材料對於製作工藝選擇和微流控晶片的成功應用非常重要。
(1) 矽材料
單晶矽是最先嘗試使用的晶片基材。矽及二氧化矽具有良好的化學惰性和熱穩定性,而且矽的微細加工技術已趨成熟。即使複雜的三維結構,也可用整體和表面微加工技術進行高精度的複製。
矽材料的缺點在於易碎、成本高、不透光、電絕緣性差且表面化學行為複雜等,雖然較厚的氧化層(>15 μm)可以提高其絕緣層,但厚氧化層尚無成熟的鍵合方法。上述缺點限制了矽材料在微流控晶片中的廣泛應用。但由於矽和聚合物材料間的粘附係數小,故現常用來製作聚合物微通道晶片時所用到的模具。
(2) 玻璃
玻璃和石英彌補了單晶矽在電學和光學方面的不足,價廉、易得,具有良好的電滲性和良好的光學性質,為微系統的故障診斷和光學檢測提供了便利條件; 然而,玻璃和石英微流控晶片存在著製作工藝複雜,加工成本過高.
而且使用玻璃和石英作基體材料時,通常使用各向同性腐蝕技術,很難獲得高深寬比的微結構,深度刻蝕困難,鍵合溫度高和鍵合成品率低,使晶片性能難以改善,且需要相應的潔淨條件和製作設備,工藝過程複雜。
要想製作對液體操控所必需的微泵和微閥是非常困難的。這些都限制了玻璃微晶片的普及化和深度產業化。
(3) 高分子聚合物
與矽和玻璃相比,聚合物材料種類多、選擇面廣、價格便宜,具有良好的絕緣性和透光性,可施加高電場實現快速分離,成型容易、批量生產成本低,易獲得高深寬比的微結構,微通道表面一般不需或僅需較少修飾,絕大部分聚合物材料對生物樣品或化學樣品具有相容性,更適合於一次性使用,具有廣闊的應用前景,已引起國內外極大的關注。
用於製作微流控晶片的聚合物主要可分為三類:熱塑性聚合物、固化型聚合物和溶劑揮髮型聚合物。熱塑性聚合物有聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)和聚乙烯(PE)等;固化型聚合物有聚二甲基矽氧烷(PDMS)、環氧樹脂和聚氨酯等;溶劑揮髮型聚合物有丙烯酸、橡膠和氟塑料等。其中,常用的有PMMA和PDMS。
PMMA材料具有良好的電絕緣性,可施加高電場進行快速分離。透光性好,成本低,成型容易,可選擇多種加工方法,如模壓法、注塑法、準分子雷射微刻蝕加工等,現已得到了極為廣泛的應用。
彈性高分子材料PDMS(又稱矽橡膠),具有價格便宜,絕緣性好,無毒;它的透光性好,能透過250 nm以上的紫外光與可見光,易於檢測;成型容易,批量生產成本低等優點。但PDMS材料製成的微結構的穩定性較差,疏水性較強,經常需要進行特別處理來進行改進。
選擇聚合物做晶片材料時,應根據加工工藝、應用環境及檢測方法等諸多因素和聚合物的光電、機械及化學性質選擇適用的類型,並注意聚合物材料在所使用的環境下的惰性、電絕緣性、熱性能和表面合適的修飾改性方法等。一般應注意以下幾個方面的問題:
① 良好的加工性
不同的加工方法對聚合物的加工性有不同的要求。由於微通道的構型越來越趨於複雜,高深寬比的微通道的優點很多,所以聚合物材料應具有良好的加工性。
② 良好的電絕緣性和熱性能
由於微流控晶片中的液體驅動經常採用電驅動方式,而且晶片經常被用於進行電泳分離,加高壓電場會產生熱量,高溫或局部高溫都會對分離效果造成影響,所以材料應有良好的電絕緣性和熱性能。
③ 良好的光學性質
對於螢光檢測和紫外檢測而言,材料必須在相應的波長範圍內有良好的透光性,才能進行有效的檢測。
④ 表面易於修飾改性
聚合物材料的表面易於進行改性,如通過紫外、等離子體、雷射和化學處理等,不僅可改變電滲流,而且還可減少樣品的的吸附。
⑤ 在使用條件下材料呈化學惰性
由於在微分析操作中經常要接觸到各種試劑,需要一定抗溶劑能力和耐酸鹼能力,因此,在所採用的分析條件下材料應是惰性的。
⑥ 根據應用場合合理選擇
當製作普通微流控晶片時,可選用軟化溫度較低的材料,如有機玻璃或聚苯乙烯;製作PCR與CE集成晶片時,可選用軟化溫度較高的材料,如聚碳酸酯或聚丙烯等。
(4) 陶瓷
陶瓷材料易碎、透光性不好,但耐高溫,有較高的抗壓強度,採用軟刻蝕或雷射加工可制出微通道,適於極限惡劣條件下使用,如航空、太空試驗和極地考察等。
(5) 紙
微流控紙晶片(lab-on-paper,紙上微型實驗室)是近幾年發展的一種新型微流控晶片。用紙張作為基底代替矽、玻璃、高聚物等材料,通過各種加工技術,在紙上加工出具有一定結構的親/疏水微細通道網絡及相關分析器件。
與傳統的矽、玻璃、高聚物微流控晶片相比,微流控紙晶片具有如下優點:
① 成本更低。
紙張來源豐富,且其價格遠低於矽、玻璃/石英、甚至高聚物等材質;可通過簡單的光刻、蠟印、噴墨列印、繪圖等方式製作二維紙晶片,或通過簡單的摺紙或多層紙片疊加的方法製作三維紙晶片,因此紙晶片製作簡便,其加工成本遠低於傳統微流控晶片。
② 分析系統更易微型化、便攜化。
濾紙本身具有很強的毛細管作用,經圖案化疏水性處理即能引導溶液有序流動,因此無需外置的驅動泵;紙張薄,質地輕,且可摺疊,因此易於保存和運輸。
③ 生物相容性好。
濾紙的主要成分為纖維素,具有良好的生物相容性,可以在其表面固定酶、蛋白質和DNA等生物大分子。
④ 檢測背景低。
紙張通常是白色,有利於在紙晶片上開展比色分析。
⑤ 後處理簡單,無汙染。
紙晶片使用完後,可通過簡單安全的燃燒方法進行處理,不會對環境造成汙染。
2、微流控晶片的製作技術
(1)光刻和刻蝕技術
傳統的用於製作半導體及集成電路晶片的光刻和刻蝕技術,是微流控晶片加工工藝中最基礎的。它是用光膠、掩膜和紫外光進行微細加工,工藝成熟,已廣泛用於矽、玻璃和石英基片上製作微結構。光刻和刻蝕技術由薄膜沉積、光刻和刻蝕三個工序組成。複雜的微結構可通過多次重複薄膜沉積-光刻-刻蝕這三個工序來完成。
光刻前先要在乾淨的基片表面覆蓋一層薄膜,薄膜的厚度為數埃到幾十微米,這一工藝過程稱之為薄膜沉積。薄膜按性能不同可分為器件工作區的外延層,限制區域擴張的掩蔽膜,起保護、鈍化和絕緣作用的絕緣介質膜,用作電極引線和器件互連的導電金屬膜等。膜材料常見有二氧化矽、氮化矽、硼磷矽玻璃、多晶矽、電導金屬、光刻抗蝕膠、難熔金屬等。製造加工薄膜的主要方法有氧化、化學氣相沉積、蒸發、濺射等。
在薄膜表面均勻地覆蓋上一層光膠,將掩膜上微流控晶片設計圖案通過曝光成像的原理轉移到光膠層上的工藝過程稱為光刻。光刻技術一般有以下基本工藝過程構成:
①基片的預處理。
通過脫脂、拋光、酸洗、水洗的方法使基片表面淨化,確保光刻膠與基片表面有良好的粘附。
②塗膠。
在經過處理的基片表面均勻塗覆一層粘性好、厚度適當的光刻膠。膠膜太薄,易生成針孔,抗蝕能力差;太厚則不易徹底顯影,同時會降低解析度。光刻膠的實際厚度與它的粘度有關,並與甩膠機的旋轉速度的平方根成反比。塗膠方法有旋轉塗覆法、刷塗法、浸漬法、噴塗法等。
③前烘。
在一定的溫度下,使光刻膠液中溶劑揮發,增強光刻膠與基片粘附以及膠膜的耐磨性。前烘的溫度和時間由光致抗蝕劑的種類和厚度決定,常採用電熱恆溫箱、熱空氣或紅外熱源。
前烘溫度和時間要合適,若溫度過高或時間過長會造成顯影時留下底膜或感光靈敏度下降,腐蝕時出現小島;若溫度過低或時間過短,會造成顯影后針孔增加,或產生浮膠、圖形變形等現象。
④曝光。
將已製備好所需晶片圖形的光刻掩膜覆蓋在基片上,用紫外線等透過掩膜對光刻膠進行選擇性照射。受光照射的光刻膠發生化學反應。在實際操作中,曝光時間由光刻膜、膠膜厚度、光源強度以及光源與基片間距決定。曝光的方式有化學曝光、接觸式和接近式複印曝光、光學投影成像曝光。
⑤顯影。
用光膠配套顯影液通過化學方法除去經曝光的光膠(正光膠)或未經曝光的光膠(負光膠),顯影液和顯影時間的選擇對顯影效果的影響很大。選擇顯影液的原則是,對需要去除的那部分膠膜溶解度大、溶解速度快,對需要保留的那部分溶解度小。顯影時間視光致抗蝕劑的種類、膠膜厚度、顯影液種類、顯影溫度和操作方法而異。
⑥堅膜。
將顯影后的基片進行清洗後在一定溫度下烘烤,以徹底除去顯影后殘留於膠膜中的溶劑或水分,使膠膜與基片緊密粘附,防止膠層脫落,並增強膠膜本身的抗蝕能力。堅膜的溫度和時間要合適。
刻蝕是將光膠層上的平面二維圖形轉移到薄膜上並進而在基片上加工成一定深度微結構的工藝。
根據刻蝕劑狀態不同,可將腐蝕工藝分為溼法刻蝕和幹法刻蝕兩大類。溼法刻蝕是通過化學刻蝕液和被刻蝕物質間的化學反應將被刻蝕物質剝離下來的刻蝕方法。大多數溼法刻蝕是不容易控制的各向同性腐蝕。
其特點是選擇比高、均勻性好、對矽片損傷少,幾乎適用於所有的金屬、玻璃、塑料等材料。缺點是圖形保真度不強,橫向腐蝕的同時,往往會出現側向鑽蝕,以致刻蝕圖形的最少線寬受到限制。
幹法刻蝕指利用高能束與表面薄膜反應,形成揮發性物質,或直接轟擊薄膜表面使之被腐蝕的工藝。其最大的特點是能實現各向異性刻蝕,即在縱向的刻蝕速率遠大於橫向刻蝕的速率,從而保證細小圖形轉移後的保真性。幹法刻蝕的作用基礎是等離子體。
用光刻的方法加工微流控晶片時,必須首先製造光刻掩模。掩膜的基本功能是基片受到光束照射時,在圖形區和非圖形區產生不同的光吸收和透過能力。用計算機製圖系統將掩模圖形轉化為數據文件,再通過專用接口電路控制圖形發生器中的曝光光源、可變光闌、工作檯和鏡頭,在掩模材料上刻出所需的圖形。或用微機通過CAD軟體將設計微通道的結構圖轉化為圖像文件後,用高解析度的印表機將圖像列印到透明薄膜上。此透明薄膜可作為光刻用的掩模, 基本能滿足微流控晶片對掩模的要求。
(2)熱壓法
熱壓法(hot embossing)是一種應用較廣泛的快速複製電泳微通道的晶片製作技術,適用於PMMA與PC等熱塑性聚合物材料。熱壓法的模具可以是直徑在50 μm以下的金屬絲或是刻蝕有凸突的微通道骨片陽膜,如鎳基陽模、單晶矽陽模、玻璃陽模、微機械加工的金屬陽模。 此法可大批量複製,設備簡單,操作簡便,但所用材料有限。
(3)模塑法
用光刻和刻蝕的方法先制出陽模(所需通道部分突起),澆注液態的高分子材料,然後將固化後的高分子材料與陽模剝離,得到具有微通道晶片的這種製備微晶片的方法稱為模塑法。模塑法的關鍵在於模具和高分子材料的選擇,理想的材料應相互之間粘附力小,易於脫模。
微通道的陽膜可由矽材料、玻璃、環氧基SU-8負光膠和PDMS等製造。矽或玻璃陽膜可採用標準刻蝕技術。PDMS模具可通過直接澆注於由矽材料、玻璃等材料制的母模上製得。
澆注用的高分子材料應具有低粘度,低固化溫度。在重力作用下,可充滿模子上的微通道和凹槽等處。可用的材料有兩類:固化型聚合物和溶劑揮髮型聚合物。
雖然模塑法受限於高分子材料,但該法簡便易行,晶片可大批量複製,且不需要昂貴的設備,是一個可以製作廉價分析晶片的方法。
(4)注塑法
注塑法的工藝是通過光刻和刻蝕技術在矽片上刻蝕出電泳晶片陰模,用此陰模進行24h左右的電鑄,得到0.5 cm厚的鎳合金模,再將鎳合金模加厚,精心加工製成金屬注塑模具,將此模具安裝在注塑機上批量生產聚合物微流控晶片基片。
在注塑法製作過程中,模具製作複雜,技術要求高,周期長,是整個工藝過程中的關鍵步驟。一個好的模具可生產30 ~ 50萬張聚合物晶片,重複性好,生產周期短,成本低廉,適宜於已成型的晶片生產。
(5)LIGA技術
LIGA是德文Lithographie,Galvanoformung,Abformung三個字的字頭縮寫。LIGA技術是由光刻、電鑄和塑鑄三個環節組成。
準LIGA技術是用紫外光光源來代替LIGA技術中的同步輻射X光深層光刻,然後進行後續的微電鑄和微複製工藝。它不需要同步輻射X光光刻和特製的X光掩膜板,有利於實現微機械器件的大批量生產。根據紫外光深層光刻的工藝路線的不同,準LIGA技術又可分為多層光刻—LIGA、矽模深刻蝕—LIGA和SU-8深層光刻—LIGA三類。
(6)雷射燒蝕法
雷射燒蝕法是一種非接觸式的微細加工技術。它可直接根據計算機CAD的數據在金屬、塑料、陶瓷等材料上加工複雜的微結構,已應用於微模和微通道的加工。 這種方法對技術設備要求較高,步驟簡便,而且不需超淨環境,精度高。但由於紫外雷射能量大,有一定的危險,需在標準雷射實驗室中進行操作,使用安全保護裝備和防護眼鏡。
(7)軟光刻
軟光刻(soft lithography)是相對於微製造領域中佔據主導地位的光刻而言的微圖形轉移和微製造的新方法,以自組裝單分子層、彈性印章和高聚物模塑技術為基礎的微細加工新技術。它能製造複雜的三維結構及不規則曲面;能應用於生物高分子、膠體、玻璃、陶瓷等多種材料;沒有相關散射帶來的精度限制,可以達到30 nm ~ 1 μm級的微小尺寸; 因此軟光刻是一種便宜、方便,適於實驗室使用的技術。
軟光刻技術的核心是彈性模印章,可通過光刻蝕和模塑的方法製得。PDMS是軟光刻中最常用的彈性模印章。軟光刻的關鍵技術主要包括微接觸印刷、再鑄模、微傳遞成模、毛細管成模、溶劑輔助成模等。
軟光刻技術還存在著一些缺陷,如PDMS固化後有1%的收縮變形,而且在甲苯和乙烷的作用下,深寬比將出現一定的膨脹;PDMS的彈性和熱膨脹性使其很難獲得高的準確性,也使軟光刻在多層面的微加工中受到限制;由於彈性模太軟,無法獲得大的深寬比,太大或太小的寬深比都將導致微結構的變形或扭曲。
如今微流控晶片已經成為涵蓋了從分離分析、化學合成、醫學診斷學、細胞生物學、神經生物學、系統生物學、結構生物學、微生物學等一系列應用研究領域的綜合性交叉學科。