...為什麼說7nm是物理極限?如何看待電晶體製程從14nm縮減到了1nm?

2021-01-17 OFweek維科網

  適用了20餘年的摩爾定律近年逐漸有了失靈的跡象。從晶片的製造來看,7nm就是矽材料晶片的物理極限。不過據外媒報導,勞倫斯伯克利國家實驗室的一個團隊打破了物理極限,採用碳納米管複合材料將現有最精尖的電晶體製程從14nm縮減到了1nm。那麼,為何說7nm就是矽材料晶片的物理極限,碳納米管複合材料又是怎麼一回事呢?面對美國的技術突破,中國應該怎麼做呢?

  XX nm製造工藝是什麼概念?

  晶片的製造工藝常常用90nm、65nm、40nm、28nm、22nm、14nm來表示,比如Intel最新的六代酷睿系列CPU就採用Intel自家的14nm製造工藝。現在的CPU內集成了以億為單位的電晶體,這種電晶體由源極、漏極和位於他們之間的柵極所組成,電流從源極流入漏極,柵極則起到控制電流通斷的作用。

  而所謂的XX nm其實指的是,CPU的上形成的互補氧化物金屬半導體場效應電晶體柵極的寬度,也被稱為柵長。

  柵長越短,則可以在相同尺寸的矽片上集成更多的電晶體——Intel曾經宣稱將柵長從130nm減小到90nm時,電晶體所佔得面積將減小一半;在晶片電晶體集成度相當的情況下,使用更先進的製造工藝,晶片的面積和功耗就越小,成本也越低。

  柵長可以分為光刻柵長和實際柵長,光刻柵長則是由光刻技術所決定的。由於在光刻中光存在衍射現象以及晶片製造中還要經歷離子注入、蝕刻、等離子衝洗、熱處理等步驟,因此會導致光刻柵長和實際柵長不一致的情況。另外,同樣的製程工藝下,實際柵長也會不一樣,比如雖然三星也推出了14nm製程工藝的晶片,但其晶片的實際柵長和Intel的14nm製程晶片的實際柵長依然有一定差距。

  為什麼說7nm是物理極限?

  之前解釋了縮短電晶體柵極的長度可以使CPU集成更多的電晶體或者有效減少電晶體的面積和功耗,並削減CPU的矽片成本。正是因此,CPU生產廠商不遺餘力地減小電晶體柵極寬度,以提高在單位面積上所集成的電晶體數量。不過這種做法也會使電子移動的距離縮短,容易導致電晶體內部電子自發通過電晶體通道的矽底板進行的從負極流向正極的運動,也就是漏電。而且隨著晶片中電晶體數量增加,原本僅數個原子層厚的二氧化矽絕緣層會變得更薄進而導致洩漏更多電子,隨後洩漏的電流又增加了晶片額外的功耗。

  為了解決漏電問題,Intel、IBM等公司可謂八仙過海,各顯神通。比如Intel在其製造工藝中融合了高介電薄膜和金屬門集成電路以解決漏電問題;IBM開發出SOI技術——在在源極和漏極埋下一層強電介質膜來解決漏電問題;此外,還有鰭式場效電晶體技術——藉由增加絕緣層的表面積來增加電容值,降低漏電流以達到防止發生電子躍遷的目的......

  上述做法在柵長大於7nm的時候一定程度上能有效解決漏電問題。不過,在採用現有晶片材料的基礎上,電晶體柵長一旦低於7nm,電晶體中的電子就很容易產生隧穿效應,為晶片的製造帶來巨大的挑戰。針對這一問題,尋找新的材料來替代矽製作7nm以下的電晶體則是一個有效的解決之法。

相關焦點

  • 7nm物理極限!1nm電晶體又是什麼鬼?
    從晶片的製造來看,7nm就是矽材料晶片的物理極限。不過據外媒報導,勞倫斯伯克利國家實驗室的一個團隊打破了物理極限,採用碳納米管複合材料將現有最精尖的電晶體製程從14nm縮減到了1nm。那麼,為何說7nm就是矽材料晶片的物理極限,碳納米管複合材料又是怎麼一回事呢?面對美國的技術突破,中國應該怎麼做呢?XX nm製造工藝是什麼概念?
  • 美國將電晶體製程縮減到1nm 中國還能趕上嗎
    近年來,晶片製造工藝的進步速度逐漸放緩,適用了20餘年的摩爾定律在新時代下也有逐漸失靈的跡象,從晶片的製造來看,7nm就是矽材料晶片的物理極限。不過據外媒報導,美國勞倫斯伯克利國家實驗室的一個團隊打破了物理極限,採用碳納米管複合材料將現有最精尖的電晶體製程從14nm縮減到了1nm。
  • 突破製程工藝:為什麼說7nm是物理極限,美國的1nm是什麼概念?
    從晶片的製造來看,7nm就是矽材料晶片的物理極限。不過據外媒報導,勞倫斯伯克利國家實驗室的一個團隊打破了物理極限,採用碳納米管複合材料將現有最精尖的電晶體製程從14nm縮減到了1nm。那麼,為何說7nm就是矽材料晶片的物理極限,碳納米管複合材料又是怎麼一回事呢?面對美國的技術突破,中國應該怎麼做呢?
  • 1nm電晶體誕生 秒殺當前14nm主流晶片製程
    【TechWeb報導】10月9日消息,據國外媒體報導,近日,美國勞倫斯伯克力國家實驗室打破物理極限,開發出了全球最小的電晶體僅1nm。這意味著,未來處理器的性能和功耗都能會獲得巨大進步。
  • 1nm電晶體誕生!
    勞倫斯伯克利國家實驗室的一個團隊打破了物理極限,將現有最精尖的電晶體製程從14nm縮減到了1nm。   電晶體的製程大小一直是計算技術進步的硬指標。眼下,我們使用的主流晶片製程為14nm,而明年,整個業界就將開始向10nm製程發展。  不過放眼未來,摩爾定律開始有些失靈了,因為從晶片的製造來看,7nm就是物理極限。一旦電晶體大小低於這一數字,它們在物理形態上就會非常集中,以至於產生量子隧穿效應,為晶片製造帶來巨大挑戰。因此,業界普遍認為,想解決這一問題就必須突破現有的邏輯門電路設計,讓電子能持續在各個邏輯門之間穿梭。
  • 1nm電晶體誕生 計算技術界的重大突破
    網絡配圖  1nm勞倫斯伯克利國家實驗室的一個團隊打破了物理極限,將現有的最精尖的電晶體製程從14nm縮減到了1nm,完成了計算技術界的一大突破!電晶體的製程大小一直是計算技術進步的硬指標。電晶體越小,同樣體積的晶片上就能集成更多,這樣一來處理器的性能和功耗都能會獲得巨大進步。  據外媒報導,今天,沉寂已久的計算技術界迎來了一個大新聞。
  • 7nm處理器是極限麼?
    但摩爾定律畢竟不是真正的物理定律,而更多是對現象的一種推測或解釋,我們也不可能期望半導體工藝可以永遠跟隨著摩爾定律所說發展下去。從現在來看,10nm工藝是能夠實現的,7nm也有了一定的技術支撐,而5nm則是現有半導體工藝的物理極限。
  • XX nm製造工藝是什麼概念?實現7nm製程工藝為什麼這麼困難?
    其實從上世紀70年代起,處理器發展的速度就沒有停下來過,從最初的180nm工藝到現在的14nm、7nm工藝,可以說製作工藝的進步帶給了CPU更多進化的可能。 然而到了7nm以後,很多在 1Xnm大放異彩的半導體公司都在7nm製程處遭遇到了苦頭,AMD御用代工廠商GF宣布無限期延期7nm製程工藝,英特爾的10nm製程更是跳票到2019年。
  • 為何說7nm是矽材料晶片的物理極限?1nm真的能救摩爾定律嗎?
    從晶片的製造來看,7nm就是矽材料晶片的物理極限。不過據外媒報導,勞倫斯伯克利國家實驗室的一個團隊打破了物理極限,採用碳納米管複合材料將現有最精尖的電晶體製程從14nm縮減到了1nm。Bazednc那麼,為何說7nm就是矽材料晶片的物理極限,碳納米管複合材料又是怎麼一回事呢?
  • FinFET工藝詳解:7nm是物理極限
    這種叉狀3D架構不僅能改善電路控制和減少漏電流,同時讓電晶體的閘長大幅度縮減。採用FinFET工藝的第三代酷睿處理器最早使用FinFET工藝的是英特爾,他們在22納米的第三代酷睿處理器上使用FinFET工藝,隨後各大半導體廠商也開始轉進到FinFET工藝之中,其中包括了臺積電16nm、10nm、三星14nm、10nm以及格羅方德的14nm。
  • 1nm電晶體誕生 驚嘆「突破物理極限」
    美國勞倫斯伯克利國家實驗室教授阿里·加維領導的一個研究小組近日利用新型材料研製出全球最小電晶體,其電晶體製程僅有1納米,被媒體驚嘆為「突破物理極限」。據印度NDTV新聞網8日報導,按照傳統的晶片製造工藝,7納米堪稱物理極限,一旦電晶體大小低於這一數字,它們就會產生所謂「量子隧穿」效應,為晶片製造帶來巨大挑戰。
  • 為何曾經說7nm是半導體晶片的極限,為何現在都在量產5nm工藝了呢
    【為何曾經說7nm是半導體晶片的極限,為何現在都在量產5nm工藝了呢】在半導體領域,有一個特別關鍵性的定律——摩爾定律。我們看看摩爾定律是怎麼規定的?這個內容似乎也沒有提到7nm工藝是極限呢,這裡涉及到一個問題,那就是這裡提到的XX nm,實際上就是電晶體柵極的寬度,也被稱為柵長。而我們晶片中的柵長越短,則可以在相同尺寸的矽片上集成更多的電晶體;其實如何控制柵長長度,這是非常必要,且需要我們控制的內容。
  • 7nm曾經是晶片製程的極限,為什麼最後還是突破了?
    多年前,很多人認為7nm將會是半導體工藝的極限,還有人曾認為14nm也將是工藝的極限,但是隨著技術的進步,這些過去我們認為不可能突破的半導體工藝節點都被突破了,22nm時代英特爾引入了3D電晶體概念,而7nm和5nm時代,EUV極紫外光刻機也發揮了至關重要的作用,所以半導體工藝的極限也是在技術的進步下不斷更新的
  • 1nm電晶體誕生 摩爾定律未終結
    正當我們為之疑惑嘆息之時,計算技術界突然傳來了一個好消息:科學家已將電晶體製程從 14 nm縮減到了 1 nm!這樣,同樣體積的晶片上就能集成更多電晶體,摩爾定律有希望繼續它的傳奇預言!這一巨大突破是由勞倫斯伯克利國家實驗室的一個團隊完成的。在阿里·加維(Ali Javey)的帶領下,他們開發出的新型電晶體柵極線寬只有1納米。
  • 挑戰物理極限 Intel已開始研究3nm工藝
    電晶體製程的極限在哪裡誰也不知道,這幾年晶片的製程是越來越低,以Intel為例,10nm產品發布在即,7nm基本準備就緒,就連略顯科幻的5nm、3nm也都在其規劃之中。從Intel給出的路線圖看,5nm、3nm還處於前沿研究階段,具體如何實現尚未定型,量產更不知何年何月,但既然已經有了規劃,相信總有一天會實現。其他廠商方面,另一大佬臺積電一年前便公布了自己的5nm、3nm規劃,並稱已有三四百人的團隊在攻關3nm,但至今仍沒有透露任何詳細情況。
  • 從14nm到5nm,現代製程工藝對CPU性能的影響究竟有多大?
    所以不難理解:為什麼AMD憑藉7nm工藝反殺了英特爾,而華為和蘋果也彼此爭搶著臺積電的5nm產能。工藝製程是CPU與生俱來的天賦,後天的補助也是難以超越。那麼,現在所謂的「14nm」,「7nm」等這樣的製程究竟對CPU性能有什麼影響呢?對我們消費者又有什麼影響呢?
  • ASML基本設計完成1nm光刻機
    眼下我們能夠使用的電子設備,晶片製程從28nm、14nm到7nm、5nm各有不同。例如我們常說的EUV「極紫外光刻」技術,使用它生產的5nm晶片——例如華為麒麟9000、蘋果M1以及三星Exynos 1080,他們是目前消費級晶片領域的第一梯隊。但由於承載材料、生產工藝的限制,摩爾定律存在著物理上的「極限」,近年來摩爾定律的達成間隔一度延長也被視為達到極限的前兆。
  • 華為蘋果追逐的7nm5nm晶片有什麼差異,為什麼都要抱臺積電大腿?
    5nm製程晶片已經研發成功,只是等待臺積電大規模量產還需要一定時間,具體來說至少要等到2020年下半年才會大批量面世,比如大家期待的蘋果A14、海思麒麟1020、高通875等等。那麼,肯定有小白要問了:5nm和7nm相差不多,為什麼華為和蘋果等廠商要競相加快研發並積極抱著臺積電的大腿呢?
  • 5G晶片美國制裁華為又到高潮,其實矽晶片已接近物理極限
    臺積電已經宣布開始量產5nm晶片,7nm晶片也是臺積電第一個宣布量產。隨著美國制裁華為的時間日益臨近,華為高端晶片的危機正在進一步的加大。 有人說這個消息不準確,已經開始有7nm晶片開始量產了,但是量產的7nm晶片每個月只有幾萬片,能提供給華為多少才能滿足
  • 晶片中,14nm工藝和7nm工藝有什麼區別?為何華為必須要用7nm工藝
    在晶片的電晶體結構中,計算機是0和1為單位進行運算,當電流從 Source(源極)流入 Drain(漏級),其中的,Gate(柵極)相當於閘門,主要負責控制兩端源極和漏級的通斷,而我們俗稱的nm值,指的是Gate的最小寬度,如它的大小決定了晶片中電流通過時候的不同損耗。