金屬光氧化還原催化的芳基/烷基放射性甲基化反應用於合成PET成像配體
作者:
小柯機器人發布時間:2020/11/26 13:32:12
美國普林斯頓大學默克催化中心David W. C. MacMillan研究小組經過不懈努力,通過金屬光氧化還原催化的芳基/烷基放射性甲基化反應,實現了一系列正電子發射成像(PET)分子的快速高效合成。相關論文於2020年11月25日發表在《自然》雜誌上。
研究團隊報導了一種廣泛適用的金屬光氧化還原催化反應,該反應可用於在合成後期向溴代芳基/烷基藥物分子前體安裝氚代或含11C的甲基,從而簡化了放射性配體的發現過程。為證明該技術廣泛的應用範圍,研究人員進行了20種氚代和10種11C標記的複雜藥物和PET放射性配體的快速合成,包括臨床中使用的[11C]UCB-J和[11C]PHNO的一步放射性合成。
研究人員還進一步概述了該方法在臨床前PET成像中的直接應用,以及該方法在自動化放射合成用於人體臨床成像示蹤劑的日常生產中的轉化應用。另外,該方法還可以拓展到其他多種同位素,包括14C,13C和氘的安裝中,非常有利於新藥項目的開發。
據悉,正電子發射斷層掃描(PET)的放射性配體是一種可用於在體內對中樞神經系統、藥物候選分子、神經退行性病變以及許多腫瘤靶點成像的高度先進的示蹤手段。儘管體外或體內的放射性配體示蹤普遍需要氚代或含11C的放射性同位素,但目前幾乎沒有用於合成這兩者的同位素標記方法,限制了PET放射性配體的發展。
附:英文原文
Title: Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery
Author: Robert W. Pipal, Kenneth T. Stout, Patricia Z. Musacchio, Sumei Ren, Thomas J. A. Graham, Stefan Verhoog, Liza Gantert, Talakad G. Lohith, Alexander Schmitz, Hsiaoju S. Lee, David Hesk, Eric D. Hostetler, Ian W. Davies, David W. C. MacMillan
Issue&Volume: 2020-11-25
Abstract: Positron emission tomography (PET) radioligands are highly enabling tracers which facilitate in vivo characterization of central nervous system (CNS) drug candidates, neurodegenerative diseases, and numerous oncology targets. While both tritium and carbon-11 radioisotopologs are generally necessary for in vitro and in vivo characterization of radioligands, there exist few radiolabeling protocols for the synthesis of either, inhibiting the development of PET radioligands. Here, we report a broadly useful metallaphotoredox-catalyzed method for late-stage installation of both tritium and carbon-11 via methylation of pharmaceutical precursors bearing aryl and alkyl bromides, simplifying radioligand discovery. To demonstrate the breadth of applicability of this technology, the rapid synthesis of 20 tritiated and 10 carbon-11-labeled complex pharmaceuticals and PET radioligands has been conducted, including a one-step radiosynthesis of clinically utilized [11C]UCB-J and [11C]PHNO. We have further outlined the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. Last, this protocol has been expanded to the installation of other diverse isotopes, including carbon-14, carbon-13, and deuterium, an enabling feature for the development of pharmaceutical programs.
DOI: 10.1038/s41586-020-3015-0
Source: https://www.nature.com/articles/s41586-020-3015-0