運動過程當中構建全等三角形,倍長中線輔助線的添加方法

2021-01-08 明月初中數學

1.如圖,在長方形ABCD中,AB=4cm,BC=6cm,點E為AB中點,如果點P在線段BC上以每秒2cm的速度由點B向點C運動,同時,點Q在線段CD上由點C向點D運動.設運動時間為t秒.

(1)當t=2時,求△EBP的面積;

(2)若點Q以與點P不同的速度運動,經過幾秒△BPE與△CQP全等,此時點Q的速度是多少?

(3)若點Q以(2)中的運動速度從點C出發,點P以原來的運動速度從點B同時出發,都逆時針沿長方形ABCD的四邊運動,求經過多長時間點P與點Q第一次在長方形ABCD的哪條邊上相遇?

【考點】列代數式;全等三角形的判定與性質

【分析】(1)依據t=2,即可得到BP的長,即可運用三角形面積公式,即可得到△EBP的面積;

(2)設點Q的運動速度為vcm/s,先根據時間、速度表示路程:BP=2t,CP=6﹣2t,CQ=vt.根據點E為AB中點表示BE=2,根據△BPE與△CQP全等的不確定性,分兩種情況:分別根據對應邊相等,列方程可得結論;

(3)依據點P的運動路程,即可得到經過9秒點P與點Q第一次在AB邊上相遇..

【解答】

【點評】此題是幾何動點問題,本題主要考查的是全等三角形的性質和判定、矩形的性質、一元一次方程的綜合應用,根據題意列方程是解題的關鍵.

2.在△ABC中,AB=4cm,AC=3cm,求BC邊上的中線AD的取值範圍.

【考點】K6:三角形三邊關係;KD:全等三角形的判定與性質

【分析】倍長中線.巧妙構造全等三角形,把要求的線段和已知的線段轉換到一個三角形中,根據三角形的三邊關係進行分析求解

【解答】

【點評】本題考查了全等三角形的判定和三角形三邊關係.主要通過作輔助線,構造全等三角形,把AB轉移為CE,再利用三角形中三邊的關係求解.

3.如圖,CF∥AB,過AC的中點E作一直線交AB於D,交CF於F,則DE與FE有什麼關係?證明你的結論.

【考點】全等三角形的判定與性質

【分析】結論:DE=EF.利用平行線的性質以及已知條件,證明兩角一邊對應相等即可證明△AED≌△CEF;

【解答】

【點評】本題考查全等三角形的判定和性質、平行線的性質等知識,解題的關鍵是正確尋找全等三角形解決問題;

4.如圖,E、A、C三點共線,AB=CE,∠B=∠E,BC=DE.求證:AB∥CD.

【考點】KD:全等三角形的判定與性質

【分析】欲證明AB∥CD,只要證明∠BAC=∠ECD,只要證明△BAC≌△ECD即可;

【解答】

【點評】本題考查全等三角形的判定和性質、平行線的判定等知識,解題的關鍵是正確尋找全等三角形解決問題.

相關焦點

  • 全等三角形證明方法歸納,典例詳解幾種輔助線做法,含思路分析
    全等三角形的應用:運用三角形全等可以證明線段相等、角相等、兩直線垂直等問題,同時能通過判定兩個三角形全等進而證明兩條線段間的位置關係和大小關係.而證明兩條線段或兩個角的和、差、倍、分相等是幾何證明的基礎.在證明的過程中,注意有時會添加輔助線。以下通過典型例題的方式詳解五種常見輔助線的做法。
  • 平面幾何輔助線專題之三角形全等之倍長中線法
    並不是知識本身,常常幾何知識只是一句話,一個公式,如平行線的判定(內錯角相等、同位角相等、同旁內角互補),勾股定理(兩直角邊的平方和等於斜邊的平方),似乎很簡單,然而幾何題卻變化萬千,而輔助線的作法也是技巧頗多.掌握常規的輔助線作法,對幾何的學習有重大意義!倍長中線法:遇中線,要倍長,倍長之後有全等.
  • 全等三角形常用的五種輔助線,學好幾何的一把鑰匙!
    全等三角形綜合題十之八九都離不開輔助線,所以掌握全等三角形這章常用的輔助線就等於擁有解決問題的金鑰匙。對於全等三角形的輔助線常用的有以下五個類型,至於選取哪種方法,要結合題目圖形和已知條件。遇到三角形的中線,作倍長中線是常用的思路。這題可延長ED至點M,使DE=DM,再連接MC和CF,通過構造出來的全等三角形和垂直平分線的性質把線段BE、CF、EF轉化到同一個三角形中即可求解。角平分線上的點到一個角兩邊的距離相等,垂直平分線上的點到一條線段兩端點的距離相等。
  • 初中數學全等三角形輔助線的幾種作法,家長可以保存給孩子
    小仙的所在城市,初中版本數學教材用的是北師大版,全等三角形是在初一下學期開始學習的,人教版是在初二。說是話,證明三角型全等的知識點並不難,即使算上直角三角形全等證明方法,其實總共才有5種(SSS,SAS,ASA,AAS,HL)。
  • 初中數學:用「倍長中線法」作輔助線解幾何題
    三角形是初中數學裡最基本的幾何圖形,而其邊上中點,又是很常見的條件。當涉及三角形中點或中線問題時,常採用延長中線一倍的辦法,即倍長中線法,來作輔助線解題。好處是通過此法構造全等三角形繼而得到平行,可將分散的條件集中在一個三角形內解題,常常出奇制勝,化腐朽為神奇。
  • 初中數學三角形全等的判定+性質+輔助線技巧都在這裡了!
    ②全等三角形的周長、面積相等。  ③全等三角形的對應邊上的高對應相等。  ④全等三角形的對應角的角平分線相等。  ⑤全等三角形的對應邊上的中線相等。  3  找全等三角形的方法  (1)可以從結論出發,看要證明相等的兩條線段(或角)分別在哪兩個可能全等的三角形中;  (2)可以從已知條件出發,看已知條件可以確定哪兩個三角形相等;  (3)從條件和結論綜合考慮,看它們能一同確定哪兩個三角形全等;  (4)若上述方法均不行,可考慮添加輔助線
  • 中考幾何滿分之路:5道例題讓你徹底掌握倍長中線法證三角形全等
    《知識梳理》利用倍長中線法證明三角形全等(1)「倍長中線」是指加倍延長中線,使所延長部分與中線相等,然後往往需要連接相應的頂點,則對應角對應邊都對應相等.常用於構造全等三角形.倍長中線法多用於構造全等三角形和證明邊之間的關係(通常用「S.A.S.」證明).
  • 初中數學乾貨:全等三角形輔助線難題突破
    全等三角形是初中學習非常重要的一部分,月考、期中期末考,還有競賽都有全等的題目。深入全等,你會發現,全等的輔助線是非常重要的一部分。具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關性質加以說明.這種作法,適合於證明線段的和、差、倍、分等類的題目。
  • 五種全等三角形輔助線作法,見招拆招,解決幾何難題的好幫手
    今天我們就來介紹五種常見的全等三角形輔助線作法,助你見招拆招!第一種,我們稱呼為倍長中線造全等。什麼意思呢,就是當題目的已知條件裡面出現中線這個幾何特徵的時候,在我們在初始圖像中找不到很好的解題突破口的情況下,我們可以考慮延長這條中線(一般是延長一倍形成相等邊)來構造全等三角形,從而揪出更多的可用條件,為解題另闢蹊徑。
  • 幾何中輔助線添加規律歸納
    幾何最難的地方就是輔助線的添加了,但是對於添加輔助線,還是有規律可循的,給大家整理了一些常見的添加輔助線的方法,掌握了對你一定有幫助!一、三角形中常見輔助線的添加1. 與角平分線有關的(1) 可向兩邊作垂線。
  • 三角形全等提高篇——倍長中線的應用,這六種題型你都會做嗎?
    普於聯想,才能更好地尋求解決問題的方法。當你遇到中點時,你會產生哪些聯想呢?學習完本專題後,能給你帶來一定的啟示。看到中點該想到什麼?1、等腰三角形中遇到底邊上的中點,常聯想「三線合一」的性質2、直角三角形中遇到斜邊上的中點,常聯想「斜邊上的中線,等於斜邊的一半」3、三角形中遇到兩邊的中點,常聯想「三角形的中位線定理」4、兩條線段相等,為全等提供條件(遇到兩平行線所截得的線段的中點時,常聯想「八字型」全等三角形)5、有中點時常構造垂直平分線6、有中點時,常會出現面積的一半
  • 中考熱點,再說倍長中線模型,進階新觀點收穫不一般
    三角形是初中數學裡最基本的幾何圖形,而其邊上中點,又是很常見的條件。當涉及三角形中點或中線問題時,常採用延長中線一倍的辦法,即倍長中線法,來作輔助線解題。好處是通過此法構造全等三角形繼而得到平行,可將分散的條件集中在一個三角形內解題,常常出奇制勝,化腐朽為神奇。且看模型的探究,和模型產生的基本結論及應用。
  • 全等三角形太難了?那是因為你還沒有掌握這些常見模型和輔助線
    全等三角形是初中幾何的開端,其它幾何知識都可以與其相結合進行考查。全等三角形有些題目具體很強的技巧性,如果第一次遇到可能沒有多少頭緒。特別是一些需要添加輔助線的題目,沒有掌握作輔助線的方法,很難做出題目。如果問全等三角形有哪些性質?
  • 初二上學期,以角平分線為對稱軸構造全等三角形,常見輔助線之一
    首先有角平分線的性質定理和判定定理,這也是角平分線很常見的輔助線之一。角平分線上的點到角兩邊的距離相等,過角平分線上任意一點作角兩邊的垂線,得到垂線段相等。再有三線合一,也是看到角平分線需要的想到的輔助線之一。在等腰三角形中,頂角的平分線、底邊上的高線與底邊上的中線重合,這也是等腰三角形中很重要的一個結論。
  • 「中考數學」與全等三角形有關的證明與計算
    說來說去還得練專家密詔趕緊看1.全等三角形的性質與判定(1)五種判定方法:①三組對應邊分別相等的兩個三角形全等(SSS);②有兩邊及其夾角對應相等的兩個三角形全等(SAS);③有兩角及其夾邊對應相等的兩個三角形全等(ASA);④有兩角及一角的對邊對應相等的兩個三角形全等(AAS);
  • 初中數學有關三角形中線角平分線一些常見輔助線題目做法講解
    我們在做數學證明題或者計算題時候,經常需要做輔助線,有些題的輔助線很好做,根據已知條件很簡單就能做出來,但是有些題目,我們需要很長的時間才能找出輔助線的做法,但是數學是一門學科,經過這麼多年的發展,出現了一些經典的題目,我們經常總結就會發現一些題目常用的輔助線做法。
  • 全等三角形動點問題,化動為靜,分類討論,學會解題方法
    全等三角形太難了?那是因為你還沒有掌握這些常見模型和輔助線全等三角形模型之倍長中線法,三種添加輔助線的方法,口訣突破幾何動點問題充分體現了數學中的「變」與「不變」的和諧統一,其特點是圖形中的某些元素或某部分幾何圖形按一定的規律運動變化,從而引發其它一些元素的數量、位置關係、圖形面積等發生變化。全等三角形動點問題將幾何與代數相結合,考查數形結合思想、分類討論思想,題目靈活多變,綜合性強。
  • 初中數學:怎樣添加二倍角問題的輔助線
    一些幾何題中常含有一個角是另一個角的二倍的條件,處理這類問題常用如下的方法添加輔助線:(1)作二倍角的平分線,構成等腰三角形.如下圖,在△ABC中,∠ABC=2∠C,作∠ABC的角平分線交AC於點D,則∠DBC=∠C,△DBC是等腰三角形.
  • 初中數學:19種有關三角形的輔助線方法歸納,結合例題實戰演練
    初中數學:有關三角形的輔助線方法歸納,共是19種類型,結合例題實戰演練,適合想要提升自己解題能力的同學。輔助線的使用對大部分初中同學來說是難以逾越的一條鴻溝,難度大,無從下手已經成為常態,今天唐老師帶大家一起搞定三角形有關的輔助線使用方法。
  • 初中數學「倍長中線」解題思路,永遠的套路,屢試不爽
    【倍長中線基本思想】當題目中遇到有中線時,要第一時間想到是否可以利用「倍長中線」的思路。「倍長中線」就是將中線延長一倍出去,然後構造全等三角形,通常能將題目中分散的條件集中到一個三角形裡來處理。【基本應用】思路分析:題目有2個條件,一是AD是中線,二是BE=AC。很顯然,BE和AC不在一個三角形裡,無法直接利用這個條件。題目要證明AF=EF,即要證明∠EAF=∠AEF。而由2個已知條件都無法和這2個角建立起直接聯繫,因此此題的突破口在AD中線上是毫無疑問的了。既然是中線,那麼先潛意識地嘗試一下「倍長中線」思路。