平面幾何輔助線專題之三角形全等之倍長中線法

2020-12-05 學霸數學

平面幾何難,難在哪裡?並不是知識本身,常常幾何知識只是一句話,一個公式,如平行線的判定(內錯角相等、同位角相等、同旁內角互補),勾股定理(兩直角邊的平方和等於斜邊的平方),似乎很簡單,然而幾何題卻變化萬千,而輔助線的作法也是技巧頗多.掌握常規的輔助線作法,對幾何的學習有重大意義!

倍長中線法:遇中線,要倍長,倍長之後有全等.

當然倍長之後,連接的方法不唯一,得到的結論是相似的,這會在題目中需要同學們恰當選擇,選擇不同證明的難易程序不一樣.

與中點有關,不一定是中線,也常常可以用類似的方法進行解答,倍長中線是一類方法,而不是一種方法.

平行線夾中點,此法在平行四邊形中更加常見.此法可歸於與中點有關的輔助線線,當然也可以叫倍長中線法.

相關焦點

  • 中考幾何滿分之路:5道例題讓你徹底掌握倍長中線法證三角形全等
    《知識梳理》利用倍長中線法證明三角形全等(1)「倍長中線」是指加倍延長中線,使所延長部分與中線相等,然後往往需要連接相應的頂點,則對應角對應邊都對應相等.常用於構造全等三角形.倍長中線法多用於構造全等三角形和證明邊之間的關係(通常用「S.A.S.」證明).
  • 初中數學:用「倍長中線法」作輔助線解幾何題
    三角形是初中數學裡最基本的幾何圖形,而其邊上中點,又是很常見的條件。當涉及三角形中點或中線問題時,常採用延長中線一倍的辦法,即倍長中線法,來作輔助線解題。好處是通過此法構造全等三角形繼而得到平行,可將分散的條件集中在一個三角形內解題,常常出奇制勝,化腐朽為神奇。
  • 運動過程當中構建全等三角形,倍長中線輔助線的添加方法
    【考點】列代數式;全等三角形的判定與性質【分析】(1)依據t=2,即可得到BP的長,即可運用三角形面積公式,即可得到△EBP的面積;(2)設點Q的運動速度為vcm/s,先根據時間、速度表示路程:BP=2t,CP=6﹣2t,CQ=vt.根據點E為AB中點表示BE=2,根據△BPE與△CQP全等的不確定性,分兩種情況:分別根據對應邊相等,列方程可得結論;
  • 五種全等三角形輔助線作法,見招拆招,解決幾何難題的好幫手
    本篇我們來探討一下涉及全等三角形的幾何解答題,作為中考的重點難點,幾何證明或者計算一直是眾多同學心中的刺。特別是在原圖上無論怎麼比劃都無法找到解題之路的時候,都開始懷疑人生了。這時候,我們應該要想到一個好幫手——幾何輔助線。
  • 初中數學乾貨:全等三角形輔助線難題突破
    全等三角形是初中學習非常重要的一部分,月考、期中期末考,還有競賽都有全等的題目。深入全等,你會發現,全等的輔助線是非常重要的一部分。具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關性質加以說明.這種作法,適合於證明線段的和、差、倍、分等類的題目。
  • 初中幾何常見輔助線之口訣,實用(角平分線)
    一 初中幾何常見輔助線口訣人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鑽研,找出規律憑經驗。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對摺看,對稱以後關係現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。
  • 初中數學三角形全等的判定+性質+輔助線技巧都在這裡了!
    ②全等三角形的周長、面積相等。  ③全等三角形的對應邊上的高對應相等。  ④全等三角形的對應角的角平分線相等。  ⑤全等三角形的對應邊上的中線相等。求證:∠ADC+∠B=180  (3)作角平分線的垂線構造等腰三角形  如下左圖所示,從角的一邊OB上的一點E作角平分線OC的垂線EF,使之與角的另一邊OA相交,則截得一個等腰三角形(△OEF),垂足為底邊上的中點D,該角平分線又成為底邊上的中線和高,以利用中位線的性質與等腰三角形的三線合一的性質。
  • 二倍角在平面幾何中的應用(一)
    說起二倍角,相信很多同學在幾何證明題目中遇到過。其考查方式比較靈活,遇到二倍角時,應該如何作輔助線,如何思考和聯想,這對多數同學而言是有難度的。當然,二倍角的處理其實是有方向可循的,一般常用的方法是直接構造等腰三角形、對稱法構造等腰三角形、作角平分線、藉助直角三角形斜邊的中線等於斜邊的一半進行轉化,當然這麼一說明顯方法也很多,而且還有一些題目不在上述方法之內的,明顯有難度。
  • 全等三角形證明方法歸納,典例詳解幾種輔助線做法,含思路分析
    全等三角形的應用:運用三角形全等可以證明線段相等、角相等、兩直線垂直等問題,同時能通過判定兩個三角形全等進而證明兩條線段間的位置關係和大小關係.而證明兩條線段或兩個角的和、差、倍、分相等是幾何證明的基礎.在證明的過程中,注意有時會添加輔助線。以下通過典型例題的方式詳解五種常見輔助線的做法。
  • 初中數學全等三角形輔助線的幾種作法,家長可以保存給孩子
    小仙的所在城市,初中版本數學教材用的是北師大版,全等三角形是在初一下學期開始學習的,人教版是在初二。說是話,證明三角型全等的知識點並不難,即使算上直角三角形全等證明方法,其實總共才有5種(SSS,SAS,ASA,AAS,HL)。
  • 全等三角形常用的五種輔助線,學好幾何的一把鑰匙!
    全等三角形綜合題十之八九都離不開輔助線,所以掌握全等三角形這章常用的輔助線就等於擁有解決問題的金鑰匙。對於全等三角形的輔助線常用的有以下五個類型,至於選取哪種方法,要結合題目圖形和已知條件。遇到三角形的中線,作倍長中線是常用的思路。這題可延長ED至點M,使DE=DM,再連接MC和CF,通過構造出來的全等三角形和垂直平分線的性質把線段BE、CF、EF轉化到同一個三角形中即可求解。角平分線上的點到一個角兩邊的距離相等,垂直平分線上的點到一條線段兩端點的距離相等。
  • 全等三角形太難了?那是因為你還沒有掌握這些常見模型和輔助線
    全等三角形是初中幾何的開端,其它幾何知識都可以與其相結合進行考查。全等三角形有些題目具體很強的技巧性,如果第一次遇到可能沒有多少頭緒。特別是一些需要添加輔助線的題目,沒有掌握作輔助線的方法,很難做出題目。如果問全等三角形有哪些性質?
  • 三角形全等提高篇——倍長中線的應用,這六種題型你都會做嗎?
    學習完本專題後,能給你帶來一定的啟示。看到中點該想到什麼?1、等腰三角形中遇到底邊上的中點,常聯想「三線合一」的性質2、直角三角形中遇到斜邊上的中點,常聯想「斜邊上的中線,等於斜邊的一半」3、三角形中遇到兩邊的中點,常聯想「三角形的中位線定理」4、兩條線段相等,為全等提供條件(遇到兩平行線所截得的線段的中點時,常聯想「八字型」全等三角形)5、有中點時常構造垂直平分線6、有中點時,常會出現面積的一半
  • 中考熱點,再說倍長中線模型,進階新觀點收穫不一般
    三角形是初中數學裡最基本的幾何圖形,而其邊上中點,又是很常見的條件。當涉及三角形中點或中線問題時,常採用延長中線一倍的辦法,即倍長中線法,來作輔助線解題。好處是通過此法構造全等三角形繼而得到平行,可將分散的條件集中在一個三角形內解題,常常出奇制勝,化腐朽為神奇。且看模型的探究,和模型產生的基本結論及應用。
  • 「持續更新」全等三角形常見輔助線:截長補短法 - 勤十二談數學
    全等三角形是我們初二學習的第一個重難點,在中考中佔有一定的比重。雖然我們在初一學習了幾何知識,也學習了部分證明過程,但是全等三角形才開始真正的進入幾何與證明。在剛學習全等三角形的時候,建議同學們把過程寫的完整點,理由也寫在每一步的後面,按照證明全等的步驟把三個條件按定理排列好用大括號括起來。
  • 「中考數學」與全等三角形有關的證明與計算
    河南說:必考內容,但是不單獨出題,均在幾何解答題中涉及,常在圓的有關證明、幾何探究題中作為解題工具進行考查。安徽說:在幾何探究題中考查,以三角形或四邊形為背景,證明三角形全等或利用三角形全等證明線段相等。河北說:考查形式僅2016年單獨考查全等三角形的判定,其餘年份均為在綜合題中考查,利用全等三角形的判定與性質作為解題工具。
  • 幾何中輔助線添加規律歸納
    幾何最難的地方就是輔助線的添加了,但是對於添加輔助線,還是有規律可循的,給大家整理了一些常見的添加輔助線的方法,掌握了對你一定有幫助!一、三角形中常見輔助線的添加1. 與角平分線有關的(1) 可向兩邊作垂線。
  • 初中數學有關三角形中線角平分線一些常見輔助線題目做法講解
    我們在做數學證明題或者計算題時候,經常需要做輔助線,有些題的輔助線很好做,根據已知條件很簡單就能做出來,但是有些題目,我們需要很長的時間才能找出輔助線的做法,但是數學是一門學科,經過這麼多年的發展,出現了一些經典的題目,我們經常總結就會發現一些題目常用的輔助線做法。
  • 全等三角形動點問題,化動為靜,分類討論,學會解題方法
    全等三角形太難了?那是因為你還沒有掌握這些常見模型和輔助線全等三角形模型之倍長中線法,三種添加輔助線的方法,口訣突破全等三角形之截長補短法,遇到AB+CD=EF這類題目怎麼辦?幾何動點問題充分體現了數學中的「變」與「不變」的和諧統一,其特點是圖形中的某些元素或某部分幾何圖形按一定的規律運動變化,從而引發其它一些元素的數量、位置關係、圖形面積等發生變化。全等三角形動點問題將幾何與代數相結合,考查數形結合思想、分類討論思想,題目靈活多變,綜合性強。
  • 中考專題之三角形知識點總結
    三角形相關知識內容初中數學幾何領域最為核心、最為重要的內容之一,這不僅是因為三角形是基本的平面圖形之一,更是由於三角形研究其他圖形的工具和基礎。如要學好多邊形(常見的是四邊形)、圓,那麼首先必須掌握好三角形知識內容,否則在學習其他幾何內容時就會感到特別困難。