衝刺19年高考數學,典型例題分析136:二項式係數的性質

2020-12-04 吳國平數學教育

典型例題分析1:

(x+a/x)(2x﹣1/x)5的展開式中各項係數的和為2,則該展開式中常數項為   .

解:由題意,(x+a/x)(2x﹣1/x)5的展開式中各項係數的和為2,

所以,令x=1則可得到方程1+a=2,解得得a=1,

故二項式為(x+1/x)(2x-1/x)5

由多項式乘法原理可得其常數項為﹣22×C53+23C52=40

故答案為40

考點分析:

二項式係數的性質.

題幹分析:

由於二項式展開式中各項的係數的和為2,故可以令x=1,建立起a的方程,解出a的值來,然後再由規律求出常數項。

典型例題分析2:

若(x+a)7的二項展開式中,含x6項的係數為7,則實數a=   .

解:(x+a)7的二項展開式的通項公式:Tr+1=C7rxra7﹣r,

令r=6,則aC71=7,解得a=1.

故答案為:1.

考點分析:

二項式係數的性質.

題幹分析:

(x+a)7的二項展開式的通項公式:Tr+1=C7rxra7﹣r,令r=6,則aC71=7,解得a.

典型例題分析3:

(x/2﹣1)(2x﹣1/x)6的展開式中x的係數為   .(用數字作答)

解:(2x﹣1/x)6展開式的通項公式為:

Tr+1=C6r(2x)6﹣r(-1/x)r=(﹣1)r26﹣rC6rx6﹣2r,

令6﹣2r=0,解得r=3,

∴(2x﹣1/x)6展開式的常數項為(﹣1)323C63=﹣160;

令6﹣2r=1,解得r=5/2,

∴(2x﹣1/x)6展開式中不含x的項;

∴(x/2﹣1)(2x﹣1/x)6的展開式中x的係數為(﹣160)/2=﹣80.

故答案為:﹣80.

考點分析:

二項式係數的性質.

題幹分析:

求出(2x﹣1/x)6展開式的常數項和含x的項,再求(x/2﹣1)(2x﹣1/x)6的展開式中x的係數.

解題反思:

本題考查了利用二項式的通項公式求展開式特定項的應用問題,是基礎題.

相關焦點

  • 衝刺19年高考數學,典型例題分析220:二項式定理的應用
    典型例題分析1:二項式(1/x﹣x)9的展開式中x3的係數是(  )A.84B.﹣84C.126D.﹣126考點分析:二項式係數的性質.題幹分析:根據二項式展開式的通項公式,令x的指數等於3,即可求出展開式中x3的係數.典型例題分析2:考點分析:二項式係數的性質.題幹分析:求定積分得到a值,代入(1﹣x)3(1﹣a/x)3,展開兩數差的立方公式後即可求得答案.
  • 高考數學衝刺,二項式定理的應用講解分析
    考點分析;二項式係數的性質.題幹分析:利用二項式定理展開即可得出.典型例題分析3:若(3x﹣1/x)n展開式中各項係數之和為16,則展開式中含x2項的係數為   .考點分析:二項式係數的性質.題幹分析:先求出二項式的指數n,再利用展開式的通項公式求出展開式中含x2項的係數.
  • 衝刺19年高考數學,典型例題分析261:等比數列的題型講解
    典型例題分析1:在正項等比數列{an}中,a1008a1009=1/100,則lga1+lga2+…+lga2016=(  )A.2015B.2016C.﹣2015D.﹣2016解:由正項等比數列{an}的性質可得
  • 衝刺19年高考數學,典型例題分析155:對數函數的圖象與性質
    典型例題分析1:已知a=log0.34,b=log43,c=0.3﹣2,則a,b,c的大小關係是(  )A.c<a<b B.b<a<c C.a<c<b考點分析:對數值大小的比較.題幹分析:利用對數函數與指數函數的單調性即可得出.
  • 衝刺19年高考數學,典型例題分析263:雙曲線有關的題型講解
    典型例題分析1:焦點為(6,0)且與雙曲線x2/2﹣y2有相同漸近線的雙曲線的方程為 (  )A.x2/24﹣y2/12=1B.y2/12﹣x2/24=1考點分析:雙曲線的簡單性質.題幹分析:設所求的雙曲線方程是x2/2﹣y2=K,由焦點(6,0)在x軸上,知 k>0,截距列出方程,求出k值,即得所求的雙曲線方程.
  • 衝刺2019年高考數學,典型例題分析108: 與平面向量相關高考題
    典型例題分析1:考點分析:平面向量數量積的運算;正弦函數的圖象.題幹分析:由f(x)=2sin(πx/6+π/3)=0,結合已知x的範圍可求A,設B(x1,y1),C(x2,y2),由正弦函數的對稱性可知B,C兩點關於A對稱即x1+x2=8,y1+y2=0,代入向量的數量積的坐標表示即可求解。典型例題分析2:考點分析:平面向量的坐標運算.
  • 衝刺19年高考數學,典型例題分析201:參數方程化成普通方程
    典型例題分析1:考點分析:參數方程化成普通方程.題幹分析:把參數方程分別化為普通方程,聯立方程得到關於x的一元二次方程,利用根與係數的關係、弦長公式即可得出.典型例題分析2:考點分析:簡單曲線的極坐標方程;參數方程化成普通方程.
  • 《「楊輝三角」與二項式係數的性質》教學設計
    教學過程2:介紹「楊輝三角」及其與二項式係數的關係楊輝,南宋著名數學家.早在1261年「楊輝三角」就出現在《詳解九章算法》一書中,楊輝指出他所用方法出於《釋鎖》算書,且我國北宋數學家賈憲(約公元11世紀)已經用過它
  • 衝刺2018年高考數學,典型例題分析45:橢圓性質的應用
    考點分析:橢圓的簡單性質.題幹分析:(I)由離心率公式和點滿足橢圓方程,及a,b,c的關係,解方程可得a,b,進而得到橢圓方程;(Ⅱ)討論直線的斜率不存在和存在,設出直線的方程為y=kx+3/2(k≠0),與橢圓方程聯立,運用韋達定理,再由|AM|=|AN|,運用兩點的距離公式,化簡整理可得k的方程,解方程可得
  • 衝刺19年高考數學,典型例題分析202:複數代數形式的混合運算
    典型例題分析1:已知i為虛數單位,則i/(1+i)的實部與虛部之積等於(  )A.1/4 B.-1/4 C.i/4 D.-i/4解:∵i/(1+i)=i(1-i)/(1+i)(1-i)=1/2+i/2,∴所求的實部與虛部之積是1/4.
  • 衝刺2018年高考數學,典型例題分析33:軌跡方程
    考點分析:軌跡方程.求軌跡方程是高考熱點問題之一,縱觀近幾年的高考數學試題,我們發現在解答題中都會考查求軌跡方程。歸納起來,求軌跡方程試題分為兩大類型:一類是已知軌跡類型,即題中直接或間接告訴了曲線類型,其解法有定義法、待定係數法;另一類是未知軌跡類型;即題中沒有告訴曲線類型。題幹分析:(Ⅰ)求出M,N的坐標,利用|OM|2+|ON|2=8求曲線E的方程;(Ⅱ)利用點差法,求出CD的斜率,即可證明結論.
  • 高中數學:二次項定理的解題技巧(高考必備)
    二項式定理是中學數學的一個重要定理,不僅在初等數學學習中有著廣泛應用,而且又是學習概率、微積分等有關高等數學的重要基礎知識.學習二項式定理的重點在於掌握二項式定理的通項公式和二項式係數的性質.難點在於二項式定理的應用.
  • 衝刺19年高考數學,典型例題分析142:等比數列有關的題型
    典型例題分析1:已知正項等比數列{an}中,a1=1,其前n項和為Sn(n∈N*),且1/a1-1/a2=2/a3,則S4=   .考點分析:等比數列的前n項和.題幹分析:由題意先求出公比,再根據前n項和公式計算即可.典型例題分析2:在公比為q且各項均為正數的等比數列{an}中,Sn為{an}的前n項和.若a1=1/q2,且S5=S2+2,則q的值為   .考點分析:等比數列的前n項和.
  • 衝刺19年高考數學,典型例題分析160: 簡單曲線的極坐標方程
    典型例題分析1:考點分析:簡單曲線的極坐標方程;參數方程化成普通方程.題幹分析:(1)曲線C的極坐標方程化為ρ2+3(ρsinθ)2=4,把ρ2=x2+y2,y=ρsinθ代入即可得出直角坐標方程.把直線l的參數方程代入曲線C的普通方程可得:13t2+56t+48=0,設點M對應的參數為:t0,利用根與係數的關係及其中點坐標公式即可得出線段AB中點M的直角坐標.
  • 衝刺19年高考數學,典型例題分析211:簡單線性規劃相關的題型
    典型例題分析1:考點分析;簡單線性規劃.題幹分析:作出不等式組對應的平面區域,利用兩點間的距離公式,以及數形結合進行求解即可.典型例題分析2:考點分析:簡單線性規劃.題幹分析:作出不等式組對應的平面區域,根據點到直線的距離公式進行轉化求解即可.
  • 衝刺2019年高考數學,典型例題分析31:客觀題講解分析
    典型例題分析1:設a=20.3,b=0.32,c=logx(x2+0.3)(x>1),則a,b,c的大小關係是(  )A.a<b<c B.b<a<c C.c<b<a D.b<c<a解:∵a=20.3<21=2且a=20.3>20=1,∴1
  • 衝刺19年高考數學,典型例題分析235:三角函數有關的題型講解
    典型例題分析1:函數f(x)=cos(π/2﹣x)的最小正周期是   .解:函數f(x)=cos(π/2﹣x)=sinx∴f(x)的最小正周期是2π.典型例題分析2:函數y=2sin2(2x)﹣1的最小正周期是   .解:函數y=2sin2(2x)﹣1,化簡可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=2π/4=π/2.
  • 衝刺19年高考數學,典型例題分析189:離散型隨機變量期望與方差...
    典型例題分析1:我校70校慶,各屆校友紛至沓來,高73級1班共來了n位校友(n>8且 n∈N*),其中女校友6位,組委會對這n位校友登記製作了一份校友名單,現隨機從中選出2位校友代表,若選出的2位校友是一男一女,則稱為「最佳組合」(Ⅰ)若隨機選出的2位校友代表為「最佳組合
  • 衝刺19年高考數學,典型例題分析264:三角函數有關的題型
    典型例題分析1:在平面直角坐標系xOy中,角θ的終邊經過點P(﹣2,t),且sinθ+cosθ=√5/5,則實數t的值為   .考點分析:任意角的三角函數的定義.題幹分析:根據三角函數的定義求出sinθ,cosθ,解方程即可得到結論.典型例題分析2:已知sin2α=2/3,則tanα+1/tanα=(  )A.1B.2C.4D.3考點分析:二倍角的正弦;三角函數的化簡求值.
  • 衝刺19年高考數學,典型例題分析262:數列求和的題型
    典型例題分析1:已知數列{an}的通項公式為an=n+cos(nπ/2),Sn為其前n項和,則S100=   .考點分析:數列的求和.題幹分析:通過記bn=cos(nπ/2)可知數列{bn}是以4為周期的周期數列,且b1+b2+b3+b4=0,進而利用等差數列的求和公式計算即得結論.