【思路分析】
(1)本題第1問與常規的中考數學壓軸題不同,不再是求解析式、交點坐標、對稱軸等知識了,而是給出了一個新概念——閉區間、閉函數,需要同學們能夠在短時間內理解閉區間與閉函數的概念,然後加以運用,考查學生的分析問題、解決問題的能力。按照規定,如果所給的反比例函數y是一個閉函數的話,那麼在閉區間[1,2018]上,它對應的函數值的取值範圍就是1≤y≤2018。那麼,剩下的問題只需證明函數值的取值範圍,就能夠解決第1問。即將x=1與x=2018分別代入函數解析式當中,求出對應的y值,然後根據反比例函數圖像的性質進行判斷即可。
(2)第2問給出的是一個閉函數,求解析式中的參數k與閉區間中的參數t的值,由題目給出的二次函數解析式可知,對稱軸為x=2,根據拋物線圖像與性質得,當x≥2時,y隨x的增大而增大,因此若y是一個閉函數的時候,滿足x=2時,y=k-4;滿足x=t時,y=t-4t+k;聯立可得關於參數k、t的一個二元二次方程組,求出k、t的值即可;
(3)由題意可以設出點B坐標(1,t),由於三角形ABC是一個直角三角形,那麼直角頂點到底是A、B、C的哪一個點呢?由於沒有具體說明直角頂點的位置,因此需要分類討論。分∠ABC=90°或∠BAC=90°或∠BCA=90°三種情況加以討論說明。