RecV重組酶系統可用於體內靶向光遺傳學修飾
作者:
小柯機器人發布時間:2020/3/24 17:22:40
近日,美國史丹福大學Ali Cetin及其小組利用RecV重組酶系統,實現對單細胞或細胞群體的體內靶向光遺傳學修飾。相關論文於2020年3月23日在線發表在《自然—方法學》雜誌上。
大腦迴路包括大量具有不同分子、解剖和生理特性的神經元,它們相互連接。為了能夠靶向單個神經元靶向用於結構和功能研究,研究人員基於Cre、Dre和Flp(RecV)開發了光誘導位點特異性DNA重組酶。
RecV可在體內通過單光子或雙光子光誘導來改變基因組修飾。通過修飾小鼠和斑馬魚基因組中的多個基因座,這一技術可以對單個神經元產生靶向性、零散且明確的標記。
結合其他遺傳策略,這一技術可以交叉靶向不同的神經元類別。在小鼠皮層中,這一技術使零散標記以及單個神經元的全腦形態重建成為可能。此外,這些酶可實現單細胞雙光子靶向遺傳修飾,並且可以與具有最小幹擾的功能性光學指示劑組合使用。
總而言之,RecV可以實現時空精確的光遺傳學修飾,並通過連結遺傳身份、形態、連通性和功能,來促進對神經迴路的單細胞分析。
附:英文原文
Title: RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations
Author: Shenqin Yao, Peng Yuan, Ben Ouellette, Thomas Zhou, Marty Mortrud, Pooja Balaram, Soumya Chatterjee, Yun Wang, Tanya L. Daigle, Bosiljka Tasic, Xiuli Kuang, Hui Gong, Qingming Luo, Shaoqun Zeng, Andrew Curtright, Ajay Dhaka, Anat Kahan, Viviana Gradinaru, Radosaw Chrapkiewicz, Mark Schnitzer, Hongkui Zeng, Ali Cetin
Issue&Volume: 2020-03-23
Abstract: Brain circuits comprise vast numbers of interconnected neurons with diverse molecular, anatomical and physiological properties. To allow targeting of individual neurons for structural and functional studies, we created light-inducible site-specific DNA recombinases based on Cre, Dre and Flp (RecVs). RecVs can induce genomic modifications by one-photon or two-photon light induction in vivo. They can produce targeted, sparse and strong labeling of individual neurons by modifying multiple loci within mouse and zebrafish genomes. In combination with other genetic strategies, they allow intersectional targeting of different neuronal classes. In the mouse cortex they enable sparse labeling and whole-brain morphological reconstructions of individual neurons. Furthermore, these enzymes allow single-cell two-photon targeted genetic modifications and can be used in combination with functional optical indicators with minimal interference. In summary, RecVs enable spatiotemporally precise optogenomic modifications that can facilitate detailed single-cell analysis of neural circuits by linking genetic identity, morphology, connectivity and function.
DOI: 10.1038/s41592-020-0774-3
Source: https://www.nature.com/articles/s41592-020-0774-3