這份一元二次方程應用題總結全面,記得多練習

2020-12-06 走進數學課堂

學會將應用問題轉化為數學問題,列一元二次方程解有關應用題是九年級數學的重點和難點。不少同學遇到這類問題總是左右為難,難以下筆,所以對於這個知識點,需要多加練習,熟練掌握每種類型的基本等量關係。

1題根據「利息=本金×利率×時間」(利率和時間應對應),代入數值,計算即可得出結論;2題解一元二次方程求出中線,再根據直角三角形斜邊上的中線等於斜邊的一半解答;3題先求出一元二次方程的兩根,那麼根據三角形的三邊關係,排除不合題意的邊,進而求得三角形周長即可。

4題因為售價=進價+利潤,所以等量關係是:原進價+原來利潤=進價降低後的進價+降價後的利潤。5題可先表示出第一次降價後的價格,那麼第一次降價後的價格×(1﹣降低的百分率)=5,把相應數值代入即可求解;6題設截去小正方形的邊長為xcm,則長方形的面積﹣四個小正方形的面積=296cm;9題設隊伍增加的行數為x,則增加的列數也為x,根據遊行隊伍人數的等量關系列出方程即可。

13題已知兩個變量的函數關係和其中一個變量的數值,求另一個變量時,只要把已知變量代入函數關係式即可求出;14題若設變化前的量為a,變化後的量為b,平均變化率為x,則經過兩次變化後的數量關係為a(1±x)2=b。16題根據題中已知的新定義化簡已知的方程,然後利用和與差的完全平方公式化簡,得到關於x的一元二次方程,開方即可求出x的值。

17題由銷售問題的數量關係總利潤=單件利潤×數量建立方程求出其解即可;18題注意重疊的面積在算橫豎彩條的面積時算了兩次,故減去一次,才等於總面積的三分之一;解出的x解要判斷x的合法性,捨去不合題意的x的值。19題根據一次性購買多於10件,那麼每增加1件,購買的所有服裝的單價降低2元,表示出每件服裝的單價,進而得出等式方程求出即可。

20題考查了二次函數的應用的知識點,解答本題的關鍵熟練掌握二次函數的性質以及二次函數最大值的求解;21題屬於經營問題,若設每件襯衫應降價x元,則每件所得利潤為(40﹣x)元,但每天多售出2x件即售出件數為(20+2x)件,因此每天贏利為(40﹣x)(20+2x)元,進而可根據題意列出方程求解。

綜上所述,我們不難看出一元二次方程應用題常考的幾個類型,還能看出每種類型都有它自己的等量關係。

相關焦點

  • 解一元二次方程的方法總結
    解一元二次方程的方法在前面的每個視頻裡面都已經講了,今天給大家總結一下解一元二次方程的方法:圖二圖二是解一元二次方程的第二種方法:配方法。此方法用途很頻繁,基本簡單的解一元二次方程的題目當中都能用到它,也很快捷。
  • <四>、一元二次方程應用題的解題技巧分析
    學會將應用問題轉化為數學問題,列一元二次方程解有關應用題是九年級數學的重點和難點。對於許多初中生來說,一遇到應用題就無從下手,左右為難,根本就沒有思路。其實解決不了應用題存在的主要問題是,①基礎知識掌握不紮實,②不能沉下心來審題分析題,③缺乏必要的解題技巧。所以對於這些知識點,需要多加練習,熟練掌握每種類型的基本等量關係。
  • 全面!初三數學《一元二次方程》題型分類總結
    一元二次方程作為進入初三的第一個章節,其重要性不言而喻,一元二次方程即是中考數學中的重要考察章節,也為二次函數的學習打下基礎。換言之,學好一元二次方程的內容將會給初中數學最重要最難的二次函數部分打下堅實的基礎。同時一元二次方程將會出現在相似三角形,圓,二次函數等重要章節的計算部分。
  • 中考數學天天練之公式法求解一元二次方程練習題以及答案詳解
    走進2020年中考數學練習題之一元二次方程習題練習第二講本次課程我們主要來帶著大家練習一下如何使用公式法求解一元二次方程的根,通過這次課程學生要能靈活使用公式求解一元二次方程的根;習題目錄和分值題目分為四道大題,總共100分,分別為:一道選擇題
  • 《一元二次方程》單元試卷,從中總結出5個考點,初三學生應知道
    」 學好一元二次方程必須熟練掌握它的重要考點,再通過有針對性地做練習,提高解題能力。為了幫助大家切身感受一元二次方程這章的重要考點,下面將為大家詳細解析一份單元模擬試卷,再來總結其中考點。6題若一元二次方程有兩不相等實數根,則根的判別式△>0,建立關於k的不等式,求出k的取值範圍,並結合二次項係數不為0求出k的最小值。8題方程兩根相等,即,結合直角三角形的判定和性質確定三角形的形狀。
  • 《實際問題與一元二次方程》設計
    一、教材分析: 1、教材的地位和作用: 生活中不少實際問題的解決都要用到方程的知識,在學習本節課之前,學生已經學會了用一元一次方程、二元一次方程(組)解決實際問題,所以本節課對學生來說並不陌生。本節內容是運用一元二次方程分析解決生活中的兩類實際問題:傳播問題和增長率問題。
  • 初數教資《一元二次方程的認識》面試逐字稿
    謝謝各位老師,我試講的題目是《一元二次方程的認識》,下邊開始我的試講。 上課,同學們好,請坐。 同學們我們之前學習過一元一次方程,你們還記得一元一次方程的一般形式嗎?你手舉得最快,你來說,你說,其中。看來大家對以前的知識掌握的非常牢固。
  • 學霸少翻課本有原因,一元二次方程考點總結,有它誰還用課本?
    就《一元二次方程》這章來說,主要的考點有5個:(1)一元二次方程的定義;(2)解一元二次方程;(3)一元二次方程根的判別式;(4)一元二次方程根與係數的關係;(5)一元二次方程的應用。一元二次方程是只含有一個未知數,含未知數項的最高指數是2的整式方程,用式子來表示就是形如ax+bx+c=0(a≠0)。
  • 一元二次方程,面積類應用題,4種重要題型詳細分析
    初中數學,一元二次方程,面積類應用題,4種重要題型詳細分析。面積(包括體積)問題是一元二次方程應用題中的重點之一,但稱不上是難點,下面這4道練習題分別代表一種常見的面積類型,好好研究一遍,基本上就可以掌握面積問題列方程的特點。
  • 九年級下冊數學習題練習之甄別一元二次方程
    九年級下冊數學一元二次方程第一講----如何判斷方程是否為一元二次方程本次課程我們先來講一下如何判斷方程是否為一元二次方程,然後給出習題進行講解,最後再給大家幾道習題,希望大家能夠認真完成一元二次方程的甄別相關的習題哦。
  • 中考數學專題複習:第8講一元二次方程及其應用
    第8講一元二次方程及其應用考點分析1.一元二次方程的概念及解法2.一元二次方程根的判別式思想方法類型二 一元二次方程的解法【解後感悟】解一元二次方程要根據方程的特點選擇合適的方法解題,但一般順序為:直接開平方法→因式分解法→公式法.一般沒有特別要求的不用配方法.解題關鍵是能把解一元二次方程轉化成解一元一次方程.
  • 一元二次方程根與係數的關係應用例析及練習
    的取值範圍,並依靠熟練的解不等式的基本技能和一定的邏輯推理,從而篩選出時,兩根能同號  說明:一元二次方程根與係數的關係深刻揭示了一元二次方程中根與係數的內在聯繫,是分析研究有關一元二次方程根的問題的重要工具,也是計算有關一元二次方程根的計算問題的重要工具。
  • 暑假預習一元二次方程解法詳解,學會歸類總結,總結方法快速解題
    暑假的時間越來越少了,作為初中生來說,現在應該開始收心學習了,提前預習能夠讓開學之後的學習輕鬆很多,為了能夠幫助同學們更好的預習,今天和同學們交流學習一元二次方程的解法,一元二次方程解法很多,對於同學們來說就要學會歸類總結了,當看到題目的時候知道這一類題目用什麼方法解答最快速,並且能夠準確地解出答案
  • 一元二次方程韋達定理及△的綜合應用,值得你們收藏
    一元二次方程韋達定理及△的綜合應用,值得你們收藏學好數學不僅需要紮實的基礎知識,而且還需要有靈敏的思維能力。那對於一些學數學比較困難的學生來說,怎麼才能夠快速地培養學習數學的興趣,提高數學的學習成績呢?
  • 一元二次函數與一元二次不等式和方程
    2019高考數學之一元二次函數與一元二次不等式1 概念一元二次函數:一個未知數,未知數的最高次數為二次。一元二次方程:一個未知數,未知數最高次數為二次的方程(等式)。基本概念2 聯繫與區別一元二次函數的圖像即可得到一元二次方程的解,其為一元二次函數圖像與
  • 《一元二次方程》培優提高之韋達定理
    《一元二次方程的根與係數的關係》是初中數學《一元二次方程》的內容,本節內容是在學習了一元二次方程的解法和根的判別式之後引入的。它深化了兩根與係數之間的關係,是今後繼續研究一元二次方程根的情況的主要工具,是方程理論的重要組成部分。
  • 初中數學:一元二次方程基礎知識點
    初中數學:一元二次方程基礎知識點一元二次方程基本知識點一元二次方程知識框架一元二次方程的有關概念1. 一元二次方程的概念:通過化簡後,只含有一個未知數(一元),並且未知數的最高次數是2(二次)的整式方程,叫做一元二次方程。
  • 怎樣學好一元二次方程?好方法和好資料必不可少,趕緊備一份!
    一元二次方程是初中數學中的重點和難點,如何才能透徹的掌握這一章?從這個一元二次方程結構圖,很直觀的看出這章的主要考點有五個。一元二次方程必須滿足三個條件:(1)只含一個未知數;(2)含未知數項的最高次數是1;(3)等號兩邊是整式。在考試中,當方程的未知數的指數或係數含參數時,需要注意方程的定義。方程的解就是使方程左右兩邊相等的未知數的值。
  • 初中數學「一元二次方程」要點解讀,替孩子收藏,數學成績增長快
    數學只要一個知識點弄懂了,一道題答對了,就能拿到這個模塊的該有的分數。初中數學,主要包含代數、幾何、統計這3個大的板塊。如果最終要在中考中斬獲高分,這三個模塊都不能差。數學基礎知識是解答數學題的前提條件,先要建立起對公式、概念的理解~記憶~運用的學習流程。
  • 與一元二次方程相關的幾個特殊應用
    一、一元二次方程特殊根的定理及運用(一)定理:1、定理一:如果一元二次方程aX^2+bX十c=O(a≠O)有兩個實數根X1、X2,且a十b十c=O,那麼,X1=1,X2=c/a2、應用:例一、已知一元二次方程