新月形超分子四肽納米結構
作者:
小柯機器人發布時間:2020/11/18 13:03:57
兩親性肽基構建基塊的自組裝產生了大量有趣的納米結構,如帶狀、纖維和管。然而,利用肽自組裝直接製備這些高度對稱基序更低對稱性的納米結構仍然是一個巨大的挑戰。
該研究發現,直徑為28±3 nm的連續和規則新月形納米結構是由一系列具有AdKSKSEX一般結構的四肽(Ad=金剛烷基,KS=擁有S-芳醯基硫肟(SATO)基團的賴氨酸殘基官能化,E=穀氨酸殘基,X=可變胺基酸殘基)形成的。在半胱氨酸存在的情況下,新月形納米結構的SATO單元釋放出生物信號氣體硫化氫(H2S),稱為肽-H2S供體結合物共軛物(PHDC),其降低巨噬細胞中活性氧(ROS)的水平。
另外的體外研究表明,新月形納米結構比普通的H2S供體和類似化學結構的PHDC(adkse)能更有效地減輕phorbol 12-肉豆蔻酸-13-醋酸酯誘導的細胞毒性,後者形成短納米蠕蟲而不是納米新月體。細胞內化研究表明,納米新月形PHDCs在降低巨噬細胞中ROS水平方面更為有效,因為它們比納米蠕蟲更好地進入細胞並留在細胞內,這突出了納米結構形態如何影響藥物傳遞的生物活性。
附:英文原文
Title: Crescent-Shaped Supramolecular Tetrapeptide Nanostructures
Author: Yin Wang, Zhao Li, Yulia Shmidov, Ryan J. Carrazzone, Ronit Bitton, John B. Matson
Issue&Volume: November 13, 2020
Abstract: Self-assembly of amphiphilic peptide-based building blocks gives rise to a plethora of interesting nanostructures such as ribbons, fibers, and tubes. However, it remains a great challenge to employ peptide self-assembly to directly produce nanostructures with lower symmetry than these highly symmetric motifs. We report here our discovery that persistent and regular crescent nanostructures with a diameter of 28 ± 3 nm formed from a series of tetrapeptides with the general structure AdKSKSEX (Ad = adamantyl group, KS = lysine residue functionalized with an S-aroylthiooxime (SATO) group, E = glutamic acid residue, and X = variable amino acid residue). In the presence of cysteine, the biological signaling gas hydrogen sulfide (H2S) was released from the SATO units of the crescent nanostructures, termed peptide–H2S donor conjugates (PHDCs), reducing levels of reactive oxygen species (ROS) in macrophage cells. Additional in vitro studies showed that the crescent nanostructures alleviated cytotoxicity induced by phorbol 12-myristate-13-acetate more effectively than common H2S donors and a PHDC of a similar chemical structure, AdKSKSE, that formed short nanoworms instead of nanocrescents. Cell internalization studies indicated that nanocrescent-forming PHDCs were more effective in reducing ROS levels in macrophages because they entered into and remained in cells better than nanoworms, highlighting how nanostructure morphology can affect bioactivity in drug delivery.
DOI: 10.1021/jacs.0c09399
Source: https://pubs.acs.org/doi/10.1021/jacs.0c09399