從青銅到王者,理解數列極限的定義你真的理解了嗎?

2020-12-04 大表哥考研數學

如果你學過高等數學(或數學分析),第一個讓你琢磨不透的定義應該就是數列極限了。

如果你有一顆徵服的心,你看了定義下面的所有例題,也經過好長一段時間的琢磨,終於有一天,你覺得你理解數列極限的定義了!

那麼恭喜你,你的數學之路將迎來極大的提升空間!王者之路即將開啟!嘿,大表哥,上題!

[分析] 如果從理論上排除C和D選項(假設先不舉特例),非常困難,因為這是考研數學概念題中最具有迷惑性的幹擾答案,沒有之一。然而命題人並不夠聰明,因為一旦考生覺得C正確,D也覺得正確,所以立即排除CD.

下面大表哥開始正式的分析:

定義中的ε有幾點需要說明:

(1)具有任意性,一個大寫的However,更強調任意小;

(2)具有暫時的固定性;

(3)ε刻畫與常數a的接近程度

其中(1)與(2)很多學生難以理解,甚至覺得兩個含義相互衝突。假設你周末要吃晚飯,你有各種選擇,火鍋,串串,炒菜米飯,過橋米線,桂林米粉,蘭州拉麵,涼皮肉夾饃。。。。。。。你有無數種選擇,但是一旦選定,你暫時就不能再挑了,大表哥收起菜單,去廚房給您做去!

極限是一種動態的趨勢,一種走向,一系列動態的點要與一個固定的點無縫連接!若ε不是任意小,則很難刻畫出極限的本質。

數列的極限收斂問題,實際過程體現了一靜一動原則,收斂到a,其中a 為固定的點。當n充分大時,an可以無限靠近a,那如何刻畫「靠近」? 你不能用程度副詞去刻畫,很靠近,特別靠近,靠近得不能再靠近了,這些話並不能嚴格去度量他們之間數學上的接近程度,即an與a之間的距離,這時候ε出現了,ε用心良苦,他要測驗an與a之間的距離,首先它要安靜下來,比如化身為1/100,這時發現可能有一部分an被淘汰出局了,因為可以找到某個項,s.t ,aN之前的項,它們對a點並不忠心,已經在a的1/100鄰域之外了。 經綜上測驗,比如又變成1/9999,這時發現還有更多的項被認定為不忠心。然而是西西弗斯的化身,它沒完沒了的使自己變小,有多小呢?只要你能想到一個很小的正數,它就比你想的正數還要小,它可以比我小外甥的小雞雞還要小。

現在把C,D選項結合起來考慮,去掉絕對值變為

定義中ε不是具有任意性嗎?所以當然可以取1/n(而且你不是強調任意小嗎?不正好也符合其特質?)這樣的邏輯似乎無懈可擊!我們不妨回到第(3)條,ε刻畫an與a之間的接近程度,那再細緻一點,要達到何種程度呢?

答:趨於0的程度;

在本題中,C,D選項試圖用形式混淆概念的本質,值得同學們深思。

PS:如果你看完大表哥的分析還是一頭霧水,我們不妨從哲學的角度再次認識這個問題。從馬哲唯物辯證法觀點出發,運動是絕對的,靜止是相對的,但只承認絕對運動否認相對靜止,就陷入詭辯主義;而只承認靜止否認運動又陷入形上學。而極限的定義中,n是運動的,它從1跑到無窮,而是相對運動的,一旦給定就暫時被固定下來,把它當成一個靜止的參考,從而找到相的N,否則N永遠找不到,因為N依賴於. 本題的CD選項陷入詭辯論的矛盾!

我是大表哥,關注我,考研不翻車!

相關焦點

  • 數列極限存在準則的理解
    關於數列的極限存在性判斷方法課本上講了三個準則:1.夾逼準則2.單調有界數列必收劍
  • 「微積分」如何理解極限定義?四道題輕鬆掌握極限定義理解與應用
    在這一系列中,一些基礎的知識點不會在文章呈現出,但是需要你用腦子去回憶與題目相關的知識點。本系列僅僅是通過題目來夯實基本概念、基本定理、基本公式、基本技能等。所以不是像其他書上那樣講定義等知識點。本期主要內容:正確理解極限定義;利用極限定義證明某數為一函數或一數列的極限;
  • 等比數列你理解對了嗎?
    一、前言等差數列之前已經講了,如果沒有看的讀者可以去看看之前作者發布的文章,今天要講的就是等比數列,很多高中生覺得自己理解了等比數列,但事實上真的理解正確了嗎?二、等比數列定義等比數列學習,肯定必須先要學習等比數列的定義,才能夠更好地理解,後續的知識點,那到底什麼是等比數列?一般地,如果一個數列從第二項起,每一項與它的前一項的比等於同一常數,那麼這個數列就是等比數列。這個常數叫做等比數列的公比,並且這個公比通常都是用q來表示的。
  • 數列極限的求法,你會幾種呢?
    1.數列轉化為函數求極限在求下面這道數列極限題目時,最讓人忽視的地方就是錯誤運用洛必達法則,洛必達法則是需要對分子分母求導,因此運用洛必達法則前必須保證變量是連續變量而不是離散變量。請看下面這道例題:首先看看下面的解答過程,你發現幾處錯誤了呢?相信你已經看出來了,有兩處錯誤,即上面標紅的部分。兩處錯誤的共同點是沒有說明t與n的關係。
  • 考研數學-極限的定義
    第一章 極限&連續極限在考研數學中佔有很大的比重,考試一般會以一道小題和一道大題出現。本文主要分享第一節,極限的定義。極限定義的準確理解能夠為高等數學的學習打下良好的基礎。同時,極限的定義常常被作為壓軸題,或者是難度較大的證明題,故大家務必將定義理解透徹。函數極限的定義,本部分採用的是張宇老師的講義。以表格的的形式列出了函數極限的所有定義式,如下。
  • 學習數列的定義,你應該要知道它的意義
    實數範圍內的數列可看成是正整數集合與實數集合之間的映射,每個正整數對應一個實數。這個性質與函數的定義很像,其實數列也可看作一個函數,只是自變量的取值範圍僅僅是正整數。也可將數列看作一系列有序的離散點組成的函數。
  • 21廈大數學考研 | 數列與函數極限複習建議!
    在數列極限這一章中,首先,引入了基本的極限的定義、性質及四則運算之後,教材中介紹了至少6個求極限的方法。隨後,有了收斂的性質,知道了收斂數列有什麼特性,比如說收斂的有界性,也就是收斂必有界,定理2.2.2(這個是判斷收斂的必要條件)。那麼反過來,有界數列必收斂嗎?
  • 你知道數列的極限和函數極限以及無窮大和無窮小及無窮小的比較
    大家好,我是專升本數學學霸,這次我們來討論數列的極限和函數極限以及無窮大和無窮小。那你知道數列的極限和函數極限、無窮大和無窮小以及無窮小的比較呢?沒關係,學霸來幫你來了。一、數列的極限講解數列的極限之前,先看看什麼是數列?
  • 數列與極限100道經典例題答案
    關於《數列與極限》部分諮詢的小夥伴們比較多,因為工作原因,斷更也是迫不得已,今天特意抽時間,把《數列與極限》的100道例題答案整理出來,
  • Faker對妖姬的理解有多深?殘血戲耍2個韓服王者,靠分身極限反殺
    就連甲子也是很少玩妖姬,不過在LOL的職業選手中,有一位選手對妖姬的理解非常深,他就是大家熟悉的李哥Faker,妖姬這個英雄在他手裡能玩出大家不能理解的極限操作,相信大家看完faker的操作之後,能夠學到妖姬的真正精髓玩法。
  • 理解黎曼猜想(三)你真的相信全體自然數的和等於-1/12嗎? | 袁嵐峰
    就是下面這個式子:                      全體自然數的和等於-1/12,你八成聽說過這個說法,對不對?!實際上,我的不少朋友不但是聽說過這個說法,而且是真的相信了,真的是按照字面上理解這個說法。
  • 微積分是數學的基礎,極限是微積分的核心,如何掌握「極限」?
    而微積分思想的理解、工具的使用,只需要理解好一個核心的概念「極限」!充滿「極限」的微積分微積分中處處充滿著辯證地矛盾:常量與變量、收斂與發散、有限與無限、近似與精確、連續與間斷、離散與連續、微分與積分等,而所有的這些概念無不與「極限」相關。
  • 數列極限重點中的重點:柯西收斂原理
    柯西列的定義由此可見,Cauchy列的基本特徵是有充分靠後的項的之後任意兩項都可以逼近到任意給定的程度,事先給定的ε就是逼近程度。柯西收斂原理就是:判斷一個數列收斂的充分必要條件是,這個數列是基本列。必要性是十分顯然的,如果數列收斂的情況下,根據數列極限定義,必然會收斂到一個值,而這兩項充分靠後的情況下也是充分接近的,我們可以在兩項中間任意取值都可以縮小到事先給定的任意程度,也就是小於ε。充分性的已知是基本列,需要證明這個基本列是收斂的,而數列收斂的證明之前有講過,只需證明兩點,具有單調性和有界性即可。
  • 高等數學之極限的定義
    幾千年前的智者早就有了極限的思想了,怎麼截也截不完阿。雖然無限接近於零。「其大無外」,想一下什麼數最大,一串阿拉伯數字,連續寫一百公裡也不是最大的,還有更大阿。肉眼看到的不是最小的,「其小無內」,沒有最小,只有更小。
  • 大自然的幾何——分形中的數列與迭代
    今天的主題是幾何,大自然的幾何,一說到幾何,大家肯定不陌生,三角形,正方形,圓等,但是自然界中的形狀都是三角形,正方形和圓嗎,並不是,經典幾何學所描繪的都是由直線或曲線,平面或曲面所構成的各種幾何形狀,他們是顯示世界中物體形狀的高度抽象。伽利略說:大自然的語言是數學,它的標誌是三角形、圓和其他圖形。但是對於了解大自然的複雜性來講,歐幾裡得幾何學是一種不充分、不具有普遍性的抽象。
  • 高中數學 數列與不等式綜合之放縮法與經典不等式公式的理解應用
    數列與不等式的綜合應用一般屬於中等或者中等偏上的難度,也是高考的熱點,是考生的必爭之地,數列不等式的高效解題成了關鍵,其常規解題方法必須熟練。解數列不等式,必須掌握放縮法與經典不等式的應用,放縮公式與經典不等式的一些公式必須理解並靈活應用,才可以快速準確解答常規題目。
  • 【知識點精講】極限的定義
    1.極限的定義與性質  2.函數極限的計算  3.數列極限的計算  4.極限的應用
  • 遞推數列存在極限的證明與極限值求解思路與典型題分析(二)——夾逼定理(定義法)
    單調性和有界性的方法來判斷遞推數列極限的存在性。但是,對於有些遞推數列,真正要驗證它的單調性和有界性並不那麼簡單,或者有時候數列根本就不具有單調性,因而也就不能直接使用單調有界準則來驗證遞推數列極限的存在性。
  • 2016考研數學:求數列極限的方法總結
    極限是考研數學每年必考的內容,在客觀題和主觀題中都有可能會涉及到,平均每年直接考查所佔的分值在10分左右,而事實上,由於這一部分內容的基礎性,每年間接考查或與其他章節結合出題的比重也很大。極限的計算是核心考點,考題所佔比重最大。熟練掌握求解極限的方法是得高分的關鍵。  極限無外乎出這三個題型:求數列極限、求函數極限、已知極限求待定參數。 熟練掌握求解極限的方法是的高分地關鍵, 極限的運算法則必須遵從,兩個極限都存在才可以進行極限的運算,如果有一個不存在就無法進行運算。以下我們就極限的內容簡單總結下。
  • 辣度用「段位」來分等級,來看看,你是青銅還是王者!
    辣度用「段位」來分等級,來看看,你是青銅還是王者!辣椒最為我們生活中不可缺少的蔬菜和調味品,我們在製作菜品的時候,加上一些辣椒可以讓食物的更加的香辣可口,而且我們每個地區的人,對吃辣的程度也有一定的承受能力,有些地方是無法不歡,有些是滴辣不吃!