7月13日,Nature Plants在線發表5篇論文,其中三篇中國學者的研究論文,分別如下:Root-associated soil bacteria can strongly influence plant fitness. DNA methylation is an epigenetic mark important to many fundamental biological processes; however, its roles in plant interactions with beneficial microbes remain elusive. Here, we report that active DNA demethylation in Arabidopsis controls root secretion of myo-inositol and consequently plant growth promotion triggered by Bacillus megaterium strain YC4. Root-secreted myo-inositol is critical for YC4 colonization and preferentially attracts B. megaterium among the examined bacteria species. Active DNA demethylation antagonizes RNA-directed DNA methylation in controlling myo-inositol homeostasis. Importantly, we demonstrate that active DNA demethylation controls myo-inositol-mediated mutualism between YC4 and Solanum lycopersicum, thus suggesting a conserved nature of this epigenetic regulatory mechanism.The DNA methyltransferases MET1 and CMT3 are known to be responsible for maintenance of DNA methylation at symmetric CG and CHG sites, respectively, in Arabidopsis thaliana. However, it is unknown how the expression of methyltransferase genes is regulated in different cell states and whether change in expression affects DNA methylation at the whole-genome level. Using a reverse genetic screen, we identified TCX5, a tesmin/TSO1-like CXC domain-containing protein, and demonstrated that it is a transcriptional repressor of genes required for maintenance of DNA methylation, which include MET1, CMT3, DDM1, KYP and VIMs. TCX5 functions redundantly with its paralogue TCX6 in repressing the expression of these genes. In the tcx5 tcx6 double mutant, expression of these genes is markedly increased, thereby leading to markedly increased DNA methylation at CHG sites and, to a lesser extent, at CG sites at the whole-genome level. Furthermore, our whole-genome DNA methylation analysis indicated that the CG and CHG methylation level is lower in differentiated quiescent cells than in dividing cells in the wild type but is comparable in the tcx5/6 mutant, suggesting that TCX5/6 are required for maintenance of the difference in DNA methylation between the two cell types. We identified TCX5/6-containing multi-subunit complexes, which are known as DREAM in other eukaryotes, and demonstrated that the Arabidopsis DREAM components function as a whole to preclude DNA hypermethylation. Given that the DREAM complexes are conserved from plants to animals, the preclusion of DNA hypermethylation by DREAM complexes may represent a conserved mechanism in eukaryotes.Cyanobacterial thylakoid membranes represent the active sites for both photosynthetic and respiratory electron transport. We used high-resolution atomic force microscopy to visualize the native organization and interactions of photosynthetic complexes within the thylakoid membranes from the model cyanobacterium Synechococcus elongatus PCC 7942. The thylakoid membranes are heterogeneous and assemble photosynthetic complexes into functional domains to enhance their coordination and regulation. Under high light, the chlorophyll-binding proteins IsiA are strongly expressed and associate with Photosystem I (PSI), forming highly variable IsiA−PSI supercomplexes to increase the absorption cross-section of PSI. There are also tight interactions of PSI with Photosystem II (PSII), cytochrome b6f, ATP synthase and NAD(P)H dehydrogenase complexes. The organizational variability of these photosynthetic supercomplexes permits efficient linear and cyclic electron transport as well as bioenergetic regulation. Understanding the organizational landscape and environmental adaptation of cyanobacterial thylakoid membranes may help inform strategies for engineering efficient photosynthetic systems and photo-biofactories
As a source of both energy and environmental information, monitoring of incoming light is crucial for plants to optimize growth throughout development1. Concordantly, the light signalling pathways in plants are highly integrated with numerous other regulatory pathways2,3. One of these signal integrators is the basic leucine zipper domain (bZIP) transcription factor LONG HYPOCOTYL 5 (HY5), which has a key role as a positive regulator of light signalling in plants4,5. Although HY5 is thought to act as a DNA-binding transcriptional regulator6,7, the lack of any apparent transactivation domain8 makes it unclear how HY5 is able to accomplish its many functions. Here we describe the identification of three B-box containing proteins (BBX20, BBX21 and BBX22) as essential partners for HY5-dependent modulation of hypocotyl elongation, anthocyanin accumulation and transcriptional regulation. The bbx20 bbx21 bbx22 (bbx202122) triple mutant mimics the phenotypes of hy5 in the light and its ability to suppress the cop1 mutant phenotype in darkness. Furthermore, 84% of genes that exhibit differential expression in bbx202122 are also regulated by HY5, and we provide evidence that HY5 requires the B-box proteins for transcriptional regulation. Finally, expression of a truncated dark-stable version of HY5 (HY5(ΔN77)) together with BBX21 mutated in its VP motif strongly promoted de-etiolation in dark-grown seedlings, demonstrating the functional interdependence of these factors. In sum, this work clarifies long-standing questions regarding HY5 action and provides an example of how a master regulator might gain both specificity and dynamicity through the obligate dependence of cofactors.
Plants and cyanobacteria use the chlorophylls embedded in their photosystems to absorb photons and perform charge separation, the first step of converting solar energy to chemical energy. While oxygenic photosynthesis is primarily based on chlorophyll a photochemistry, which is powered by red light, a few cyanobacterial species can harness less energetic photons when growing in far-red light. Acclimatization to far-red light involves the incorporation of a small number of molecules of red-shifted chlorophyll f in the photosystems, whereas the most abundant pigment remains chlorophyll a. Due to its different energetics, chlorophyll f is expected to alter the excited-state dynamics of the photosynthetic units and, ultimately, their performances. Here we combined time-resolved fluorescence measurements on intact cells and isolated complexes to show that chlorophyll f insertion slows down the overall energy trapping in both photosystems. While this marginally affects the efficiency of photosystem I, it substantially decreases that of photosystem II. Nevertheless, we show that despite the lower energy output, the insertion of red-shifted chlorophylls in the photosystems remains advantageous in environments that are enriched in far-red light and therefore represents a viable strategy for extending the photosynthetically active spectrum in other organisms, including plants. However, careful design of the new photosynthetic units will be required to preserve their efficiency.
植物科學最前沿,專注於植物科學前沿進展、資訊、招聘信息的發布及方法軟體共享等。投稿及招聘請後臺回復「投稿」,均為無償;商務合作請聯繫微信ID:zwkxqy ;