數學中的自然常數e有什麼來頭?

2021-03-01 怪羅

數學中有許多重要的常數,例如圓周率π和虛數單位i(等於根號負一)。但數學中還有一個同樣重要的常數,那就是自然常數e,儘管沒有圓周率那麼為人所熟知。這個常數經常出現在數學和物理學之中,但它從哪裡來?它究竟是什麼意思?

在18世紀初,數學大師萊昂哈德·歐拉(Leonard Euler)發現了這個自然常數e(又稱歐拉數)。當時,歐拉試圖解決由另一位數學家雅各布·伯努利(Jacob Bernoulli)在半個世紀前提出的問題。

伯努利的問題與複利有關。假設你在銀行裡存了一筆錢,銀行每年以100%的利率兌換這筆錢。一年後,你會得到(1 + 100%)^1 = 2倍的收益。

現在假設銀行每六個月結算一次利息,但只能提供利率的一半,即50%。在這種情況下,一年後的收益為(1+50%)^2=2.25倍。

而假設銀行每月提供8.3%(100%的1/12)複利息,或每周1.9%(100%的1/52)複利息。在這種情況下,一年後你會賺取投資的(1 + 1/12)^12 = 2.61倍和(1 + 1/52)^52 = 2.69倍。

根據這個規律,可以得到一條通式。如果假設n為利息複利的次數,那麼利率就是其倒數1/n。一年後的收益公式為(1 + 1/n)^n。例如,如果利息每年複利5次,那收益則為初始投資的(1 + 1/5)^5 = 2.49倍。

那麼,如果n變得很大,會怎樣?如果n變得無限大,那(1 + 1/n)^n是否也會變得無限大?這就是伯努利試圖回答的問題,但直到50年後才由歐拉最終獲得結果。原來,當n趨於無窮大時,(1 + 1/n)^n並非也變得無窮大,而是等於2.718281828459…。這是一個類似於圓周率的無限不循環小數(即無理數),用字母e表示,被稱為自然常數。

當然,e不僅僅只是一個隨意數字。事實上,它是數學中最有用的常數之一。如果繪製方程y = e^x,就會發現,對於曲線上任何點的斜率也是e^x,而從負無窮大到x的曲線下方面積也是e^x。e是唯一使y = n^x這個方程有如此奇特性質的數字。

在微積分中,可以想像e也是一個非常重要的數字。同時,自然常數e也是物理學中的一個重要數字,它通常出現在有關波(如光波、聲波和量子波)的方程之中。

此外,關於e還有一個非常著名的公式,即歐拉恆等式:e^(iπ) + 1 = 0,這個完美的公式把數學中最重要的數字都聯繫在一起了。

歡迎關注怪羅微信公眾號(id:guailuo123)


相關焦點

  • 數學常數e
    自然常數e和圓周率π、黃金分割數φ一起被稱為「三大數學常數」。e作為重要數學常數之一,常出現於數學和物理學之中。
  • 自然常數e的意義
    , 這個數就是自然常數" e "。在大多的運算裡, 用英文表示的都是未知數, 而" e "卻是一個有固定值的數—— 2.71828 18284.後邊無限位。第一次在高中接觸" e "的時候, 是做對數函數log運算, 搞特殊的" loge "直接寫成" ln ", 以自然常數為底。可是呢然後呢?高中數學並沒更多的解析。
  • 自然常數 e 的故事
    請關注 [遇見數學] 今日頭條收看更多關於數學文章的資料和視頻!E(自然常數, 也稱為歐拉數)是自然對數函數的底數. 它是一個無理數, 就是說小數點後面無窮無盡, 永不重複. 與 Pi 和 sqrt(2) 不同, 它不是由幾何問題上探究而來的, 而是關於增長率和變化率的常數. 但是它為什麼和增長率有關呢?
  • 自然常數e:原來是這麼來的
    數學中有許多重要的常數,例如圓周率π和虛數單位i(等於根號負一)。但數學中還有一個同樣重要的常數,那就是自然常數e,儘管沒有圓周率那麼為人所熟知。這個常數經常出現在數學和物理學之中,但它從哪裡來?它究竟是什麼意思?在18世紀初,數學大師萊昂哈德?
  • 數學常數e的含義
    e是一個重要的常數,但是它的直觀含義卻不像π那麼明了。我們都知道,圓的周長與直徑之比是一個常數,這個常數被稱為圓周率,記作π=3.14159…,可是如果我問你,e代表了什麼,你能回答嗎?不妨先來看看 維基百科 是怎麼說的:「e是自然對數的底數。」但是,你去看「 自然對數 」這個條目,得到的解釋卻是:「自然對數是以e為底的對數函數,e是一個無理數,約等於2.718281828。」
  • 自然常數e為什麼這麼重要?
    我們知道,自然界有一些十分重要的常數,如0,1,i,π,e等,它們的存在很大程度上影響了我們的學習與生活,今天我們就來深度挖掘一下,自然常數e為什麼這麼重要?在回答自然常數e為什麼這麼重要之前,我們首先要問,自然常數e是什麼?簡單搜索一下可以發現,百度百科裡面是這麼解釋的:自然常數,是數學科的一種法則。
  • 洞穿宇宙奧秘的常數——自然常數e
    大家最為熟知的常數恐怕要數圓周率π了,但還有一個非常重要的常數,其重要性可以說和π不分伯仲。這就是著名的自然常數 e,e的定義如下圖π=3.1415926……e=2.71828以e為底數的對數稱為自然對數,記作log(e,N)=ln(N)自然對數函數的導數[ln(x)]』=1/x以e為底的指數函數e^x的導數就是本身(e^x)』=e^x這是除了0以外,唯一一個導數不變的函數
  • 與圓周率並肩的自然常數e,到底自然在哪裡?
    寫在前面自π以後,我們又學了一個很常見的無理數常數e,但是不同於圓周率我們的課本上還有明確的定義,而自然常數e我們的高中老師就直接讓我們記下來(阿拉丁最煩這樣了),那它到底是什麼東西,自然在哪裡呢?神秘的主角但是我們的老師卻對這個自然常數的來源閉口不提,那麼它到底有什麼特殊的意義?為什麼它就有這麼好的待遇有一個專屬的名稱——自然常數,而不像其他大多數無理數那樣統稱為無理數呢?
  • 與圓周率並肩的自然常數e,到底自然在哪裡?
    但是不同於圓周率我們的課本上還有明確的定義,而自然常數e我們的高中老師就直接讓我們記下來(阿拉丁最煩這樣了),那它到底是什麼東西,自然在哪裡呢?,那麼它到底有什麼特殊的意義?為什麼它就有這麼好的待遇有一個專屬的名稱——自然常數,而不像其他大多數無理數那樣統稱為無理數呢?
  • 自然常數e,又叫歐拉數,即自然對數的底數的前世今生
    數學中有許多重要的常數,例如圓周率π和虛數單位i(等於根號負一)。但數學中還有一個同樣重要的常數,那就是自然常數e,儘管沒有圓周率那麼為人所熟知。這個常數經常出現在數學和物理學之中,但它從哪裡來?它究竟是什麼意思?
  • 自然常數e到底有多少秘密?數學家歐拉、高斯等也沒研究透徹
    定理中的兩個重要概念——質數與自然常數e,一個屬於數論範疇,另一個(lnx中的自然常數e)則隸屬於分析學。「質數定理」將兩個看似毫無關聯的數學分支—— 「數論與分析」緊密聯繫在了一起。>數學中很多重要的常數,如圓周率π,根號2等,但從定義上理解,自然常數e可能是最為耀眼的一個,因為它是第一個使用極限來定義的常數:
  • 數學經典:歐拉告訴你自然常數e是如何被引入到數學中的 - 電子通信...
    歐拉在他的著作中詳細討論了自然常數e的來源和被發現的過程,主要是有二項式定理得出,這是一個非常巧妙的發現。當a>1時,a^ω隨a的增加而增加,因為a^0=1,所以當ω是無窮小時,a^ω會不斷趨於0,所以我們有這裡的ψ是無窮小,當ψ不是無窮小時,就意味著ω不是無窮小,這說明了和ψ存是相互關聯的,這裡我們讓ψ=kω,就會得到當以a為底:得到如下對數形式
  • 奇妙的聯繫——自然常數e與指數函數求導
    這是《機器學習中的數學基礎》系列的第12篇,也是微積分的第5篇。今天我們來關注指數函數的求導,不過在此之前,先來看一個工業界和設計界都會用到的自然常數e,它也和指數函數有著密切的聯繫。自然常數e那麼,什麼是自然常數e?它的定義如下:也就是說,當x趨於0時,上面式子的值就是自然常數e。
  • Filecoin的共識機制的實現進化與自然常數e的關係
    自然常數 e,是一個神奇的數,在數學中又極為自然。本文講一講 Filecoin 的共識機制的實現進化與自然常數 e 的關係。內容提要一、自然常數 e二、初期預期共識空塊率過高:1/e三、預期共識的實現是一個不段發現的過程四、tipset區塊數預期提升(至5),安全性和效率的兼顧五、讓每一個字節都參與投票:優雅的密碼抽籤 + e【預警:數學、概率與分布】數學常數 ee 被成為自然常數,在數學家的眼裡,這個常數非常自然。
  • LabVIEW編程實例:如何求解自然常數e
    實例說明自然常數e,是數學中最重要的常數之一,是一個無限不循環小數,也是自然對數函數的底數,其值約為2.71828。它的一個經典的數學定義公式是:使用計算機計算e的值時,可以使用下面的公式近似計算:那麼在LabVIEW中如何編程實現求解這個公式即e的值呢?編程思路從上面的近似公式可以看出,e的值與n的階乘有關,可將上式分解為兩個步驟:求解n的階乘:n!=1×2×3×......
  • 自然常數e到底是個什麼東西?
    自然常數e,是一個無理數,也是超越數,其值為2.71828……e被稱為歐拉數,以瑞士數學家歐拉;也被稱為納皮爾常數,以紀念蘇格蘭數學家約翰·納皮爾引進了對數。第一次提到自然常數e,是約翰·納皮爾於1618年出版的對數著作附錄中的一張表。第一次把e看為常數的是雅各·伯努利。第一次用到常數e,是萊布尼茨於1690年和1691年給惠更斯的通信,以b表示。
  • 你知道自然常數e有多麼的無理嗎?
    自然常數e的性質有很多,首先它的無理性是當時數學家們首先要解決的,本篇就來談一談e是有多麼的無理,既然選擇了通向無理的徵程,就讓我們開始吧。如果你對1=0.999……這樣的數學知識非常感興趣,那你同樣對本篇即將要探索的無理性更感興趣。首先為了廣大讀者更好的理解,我們就從頭開始說起,首先如下眾所周知,e就等於其中我們高中已經學過了階乘的含義,例如5!
  • 數學中e為什麼叫自然對數,他到底是什麼?
    張英峰e有時被稱為自然常數(Natural constant),是一個約等於2.71828182845904523536……的無理數。以e為底的對數稱為自然對數(Natural logarithm),數學中使用自然(Natural)這個詞的還有自然數(Natural number)。
  • 你知道數學中常數e的秘密嗎?它還可以幫你找對象
    然而,在數學家眼裡,這個問題並不是無從下手的,他們會告訴你前37位是可以錯過的,從第38位開始,你就不要錯過與前37位中最好的那位相差不大的女性了,或者如果出現了一位比前面的所有人都好,請果斷下手。你也許會覺得可笑,說緣分問題怎麼可能會用數字說這麼準確。當然,這不是百分之百準確的,這只是個概率問題,表現出的是一個規律。而這個規律,就與e常數息息相關。
  • 神奇的常數e的由來
    我們知道圓周率π代表了圓的周長與直徑之比約等於3.14,可是數學中的常數e怎麼來的,它的含義是什麼呢?在18世紀初,數學家歐拉發現了這個自然常數e。2.71828182845904523,這就是描述增長率的自然常量 e 來歷。在微積分教程中有具體的計算過程,用到了二項式展開,以及極限的概念等。這個單調增加的有界數列必有極限,這個極限就為e。d