十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
「十字相乘法」雖然比較難學,但是學會了它, 用十字相乘法來解題的速度比較快,能夠節約時間,而且運算量不大,不容易出錯。它在分解因式/解一元二次方程中有廣泛的應用:
例1 把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
解:因為 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2 把5x²+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項係數分為1×5,常數項分為-4×2時,才符合本題
解: 因為 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3 解方程x²-8x+15=0
分析:把x²-8x+15看成關於x的一個二次三項式,則15可分成1×15,
3×5。
解: 因為 1 -3
1 ╳ -5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、 解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一個關於x的二次三項式,
則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因為 2 -5
3 ╳ 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
用十字相乘法解一些比較難的題目:
例5 把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一個關於x的二次三項式,
則14可分為1×14,2×7, 18y²可分為y.18y , 2y.9y , 3y.6y
解: 因為 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本題中,要把這個多項式整理成二次三項式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3)
4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
2 -(7y – 1)
5 ╳ 4y - 3
=[2x -(7y -1)][5x +(4y -3)]
=(2x -7y +1)(5x +4y -3)
說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把
10x²-(27y+1)x -(4y-3)(7y -1)分解為:[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
2 -7y
5 ╳ 4y
=(2x -7y)(5x +4y)-(x -25y)- 3
2 x -7y 1
5 x +4y ╳ -3
=[(2x -7y)+1] [(5x +4y)-3]
=(2x -7y+1)(5x +4y -3)
說明:在本題中先把10x²-27xy-28y²用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x +4y)-3].
例7:解關於x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法進行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
1 -b
2 ╳ +b
x²- 3ax +(2a+b)(a-b)=0
1 -(2a+b)
1 ╳ -(a-b)
[x-(2a+b)][ x-(a-b)]=0
所以 x1=2a+b x2=a-b
兩種相關聯的變量之間的二次函數的關係,可以用三種不同形式的解析式表示:一般式、頂點式、交點式交點式.利用配方法,把二次函數的一般式變形為 :
Y=a[(x+b/2a)2-(b2-4ac)/4a2]
應用平方差公式對右端進行因式分解,得
Y=a[x+b/2a+√b2-4ac/2a][x+b/2a-√b2-4ac/2a]
=a[x-(-b-√b2-4ac)/2a][x-(-b+√b2-4ac)/2a]
因為一元二次方程ax2+bx+c=0的兩根分別為x1,x2=(-b±√b2-4ac)/2a
所以上式可寫成y=a(x-x1)(x-x2),其中x1,x2是方程ax2+bx+c=0的兩個根
因x1,x2恰為此函數圖象與x軸兩交點(x1,0),(x2,0)的橫坐標,故我們把函數y=a(x-x1)(x-x2)叫做函數的交點式.在解決二次函數的圖象和x軸交點坐標有關的問題時,使用交點式較為方便。二次函數的交點式還可利用下列變形方法求得:
設方程ax2+bx+c=0的兩根分別為x1,x2
根據根與係數的關係x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),c/a=x1x2
∴y=ax2+bx+c
=a[x2+b/a*x+c/a]
=a[x2-(x1+x2)x+x1x2]
=a(x-x1)(x-x2)
歡迎使用手機、平板等行動裝置訪問中考網,2021中考一路陪伴同行!>>點擊查看