初高中必學的因式分解方法——十字相乘法

2021-01-08 田老師數學小課堂

一、前言

在北師版數學教材上,並沒有十字相乘法這一章,在中考中十字相乘法也不作為考點考察。但是,在初中階段,一些一元二次方程的題目使用十字相乘法可以更快的解出答案;在高中階段,十字相乘法可以說是隨時可能用到;更重要的是,十字相乘法可以很好的培養數感。因此,熟練掌握十字相乘法是非常必要的

二、知己知彼

想要熟練的掌握十字相乘法,就一定要了解它的原理,我們先看這樣幾個式子:

觀察這幾個式子,相信大家能很快的說出下面這個式子的結果

為了更加清晰的說明十字相乘的原理:我們做如下的說眀:

小學我們都學過豎式乘法

其實剛才列舉的式子也可以用豎式進行計算

從所列豎式中,我們不難發現,2×3=6,2+3=5(2x+3x=5x)

搞清楚了這個原理,十字相乘法就很容易了,其實就是把上面的過程反過來,下面以一道題目為例進行具體的說明

例1:因式分解

我們心裡清楚,最後的結果一定是下面這種形式

問題的關鍵就是求出a和b

而通過剛才的例子,我們知道14=ab,9=a+b,那麼我們該從哪裡入手呢?

這裡做兩個說明:(1)分解的結果中a、b都是整數(不會出分數、無理數什麼的)

(2)要分解14,而不是去拆解9。因式分解題目結果中的係數,都是整數,那麼14的分解情況就很少了,而和為9的情況太多了,由此可見去分解14是最簡單的做法

於是,我們得到了分解這類二次三項式的方法:

先把常數14分解成兩個因數的積(整數),再看一看這兩個因數的和是不是等於一次項的係數。如果等於,分解結束;如果不等於繼續嘗試。

總結為一句口訣:分兩頭、中間湊

當然,如果我們能將剛剛提到的列豎式的方法加入,就有了更簡單的寫法

最後再將每一橫行寫到一個括號裡得出最後的結果

這裡也有一句比較常用的口訣:豎拆、叉乘、橫寫(豎拆常數二次項、叉乘求和湊中項,橫寫括號得結果)

例題2:因式分解

熟練掌握後,也可直接寫係數

在分解6時,同號得正,且中間項係數為負,那就只需考慮-1×(-6)或-2×(-3),

因-1+(-6)=-7,所以結果為

例題3:因式分解

在分解﹣6時,異號得負,且中間項係數為-1,那就只能分解成-3和2

故結果為

三、更進一步

前面研究了二次項係數為1的二次三項式,一般的二次三項式也可利用十字相乘來分解

例題4:因式分解

採取類似的方法:把6分解成2×3,寫在第一列;把2分解成-1×(-2),寫在第二列,然後交叉相乘進行驗證,如果不行,繼續嘗試。

結果為

例題5:因式分解

這道題稍微有些複雜,可能需要一定的嘗試

四、特殊情況的特殊做法

二次三項式係數和為0 ,有特殊解法,說明如下 :

掌握了這個方法,下面的題目可以直接得出答案

五、寫在最後的話

以上是自己教學以來對十字相乘的一些心得體會, 分享給大家,如有不足歡迎大家批評指正。

相關焦點

  • 「方法技巧」初高中必須會的數學方法之三——十字相乘法
    十字相乘法是因式分解中十二種方法之一,另外十一種分別是:1分組分解法2.拆添項法 3.配方法4.因式定理(公式法)5.換元法6.主元法7.特殊值法8.待定係數法9.雙十字相乘法10.二次多項式11.提公因式法。難點:靈活運用十字分解法分解因式。
  • 因式分解方法:雙十字相乘法與拆法添項法
    5、雙十字相乘法     在分解二次三項式時,十字相乘法是常用的基本方法,對於比較複雜的多項式,尤其是某些二次六項式,如4x2-4xy-3y2-4x+10y-3,也可以運用十字相乘法分解因式,其具體步驟為:     (1)用十字相乘法分解由前三次組成的二次三項式,得到一個十字相乘圖
  • 初中數學:因式分解有哪些方法?十字相乘法因式分解4道例題全解
    因式分解方法步驟:①如果多項式的各項有公因式,那麼先提公因式;②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解④分解因式,必須進行到每一個多項式因式都不能再分解為止
  • 用十字相乘法因式分解方法總結,送給一直有疑問的孩子
    用十字相乘法因式分解方法總結,送給一直有疑問的孩子暑假該學新課還是複習課,一直是還多家長和孩子糾結的問題。老師的個人建議是先把以前學過的知識掌握好再開始新的課程,因為難得有這麼長的暑假可以查缺補漏。因式分解是中考中必考的一知識點,因式分解的方法有很多,很多同學對用十字相乘法因式分解一直存在疑惑,今天老師帶你們重新來學一下用十字相乘法因式分解,送給一直有疑問的孩子,幫你查缺補漏。首先學生需要知道什麼是十字相乘法。十字相乘法有一個公式那就是:x^2+(a+b)x+ab=(x+a)(x+b)。接下來我們以幾個例子來看一下:(如下圖)
  • 初中數學:因式分解之雙十字相乘法精講
    上篇文章給大家分享了因式分解的四種基本方法,今天再給大家分享一篇在十字相乘法基礎上演繹而來的雙十字相乘法來進行因式分解。十字相乘法是二次三項式進行因式分解的重要方法,分解的要領是「頭尾分解,交叉相乘,求和湊中,試驗篩選」,十字相乘法只適用於二次三項式的因式分解,但是對於形如ax^2十bxy十cy^2十dx+ey十f的多項式就顯得有點力不從心了,此時運用十字相乘法分解顯然是無法一步到位的,需要兩次運用到十字相乘法。
  • 初一下學期,因式分解高級解法之十字相乘法,需要掌握的方法
    雖然十字相乘法並沒有作為知識點在書本中有所體現,但是很多題目都能用到這種方法。在上一篇文章中,我們沒有過多提及這種方法,本篇文章我們專門來說一下因式分解的高級解法:十字相乘法。十字相乘法同樣的適用於二次三項式,本質上是將我們前面講的配方法、完全平方公式和平方差公式三個知識點結合起來使用。在二次三項式ax2+bx+c中,ax2稱為二次項,bx為一次項,c為常數項,我們主要對這樣的二次三項式用十字相乘法進行因式分解。
  • 2019年中考數學最全的因式分解方法:雙十字相乘法與拆法添項法
    雙十字相乘法 在分解二次三項式時,十字相乘法是常用的基本方法,對於比較複雜的多項式,尤其是某些二次六項式,如4x2-4xy-3y2-4x+10y-3,也可以運用十字相乘法分解因式,其具體步驟為: 1)用十字相乘法分解由前三次組成的二次三項式,得到一個十字相乘圖 2)把常數項分解成兩個因式填在第二個十字的右邊且使這兩個因式在第二個十字中交叉之積的和等於原式中含y
  • 重點中學學霸的筆記:數學十字相乘法因式分解
    因式分解在初中,雖然在一些重大的考試或者測驗中,直接考因式分解的題目不多,只有很少很少一部分,但是要用到因式分解的題卻很多。很多同學在解題的時候,沒把握,拿不準,大概率是因為因式分解沒有掌握透徹。那麼什麼是因式分解?因式分解就是把一個整式分解成若干個整式的積。
  • 初中數學十字相乘法因式分解,簡單,容易掌握!
    因式分解,是初二數學重要內容,也是中考必考。因式分解重點考查學生計算能力和計算的捷徑,十字相乘法可以把運算趨於簡便,更容易和準確地寫出計算答案,這個方法也是要學生必須掌握的一種計算方法!而十字相乘法求字母參數的值,也是經常出現在各類考試中。
  • 初一數學一點通:如何理解和掌握十字相乘法進行《因式分解》
    通過這段時間的學習,相信大家對整式相乘、因式分解都有了很好的認識,雖然我們書上也介紹了提公因式、代入公式和分組分解等方法,但你們發現沒有,對於因式分解的題目,沒有普遍適用的方法,怎麼分解完全取決於我們的觀察分析,做出判斷和選擇。
  • 初中數學:如何判斷ax^2+bx+c能用十字相乘法因式分解?
    十字相乘法的公式一般式當a=b=1時,為最常見二次項係數為1時的十字相乘法公式判斷ax^2+bx+c(a≠0)能用十字相乘法因式分解對於二次三項式ax^2+bx+c(a≠0),如果判別式△=b^2-4ac的值是一完全平方數,那麼ax^2+bx+c一定可以用十字相乘法因式分解。
  • 十字相乘因式分解解題技巧以及考察方式匯總
    中考數學必考考點十字相乘因式分解詳解hello,這裡是尖子生數理化教育,很高興又和大家見面了。這次課程我們就為大家講解一下十字相乘因式分解相關的答題技巧和考點吧。經常考核的是二次項係數部位1的二次函數的求根方法。求解方法:將二次項的係數和常數項分別進行分解,調角相乘再相加求得的是一次項。
  • 一元二次方程的解法:公式法、因式分解法和十字相乘法基礎練習
    初中數學,一元二次方程的解法:公式法、因式分解法和十字相乘法基礎練習。這節課是基礎課,主要講解除配方法外的其它解法,其中十字相乘法不是一種獨立的解法,它應該歸類於因式分解法,因為有不少學生對這種解法不熟悉,所以單獨列為一類進行講解。
  • 一題二套三相乘四分組,因式分解最強十字口訣!轉給初中的娃
    接下來帶各位複習下提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.。例如:am+bm+cm=m(a+b+c)順道送你們一句口訣:找準公因式,一次要提淨;全家都搬走,留1把家守;提負要變號,變形看奇偶。光說不練假把式,光練不說傻把式。
  • 2019年初高中銜接暨高一分班測試講座2,因式分解重要性無法想像
    因式分解在初高中各類數學考試中有著非常重要的地位,熟練地掌握是今後學習的前提. 它是中學數學中最重要的恆等變形之一,它被廣泛地應用於初等數學之中,是我們解決許多數學問題的有力工具。因式分解方法靈活,技巧性強,學習這些方法與技巧,不僅是掌握因式分解內容所必需的,而且對於培養學生的解題技能,發展學生的思維能力,都有著十分獨特的作用。因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分組分解法,另外還應了解求根法及待定係數法.
  • 解一元二次方程:十字相乘法和配方法的對比
    前面我們已經說了,解一元二次方程的方法有很多種:直接開平方法、配方法、公式法、因式分解法等等,我們都已經講過。學會以後,我們在解一元二次方程的時候就要學會靈活運用,這樣才能保證解題速度,在數學考試中才能節省時間。今天我給大家舉一個因式分解法裡面十字相乘和配方法對比的例子,大家看一下。
  • 七年級數學因式分解的7種方法,你知道了幾種?
    編首語:因式分解在中考中佔據了很大的比例,因式分解常常穿插在綜合題裡,然而在初中的數學教材中主要介紹了提公因式法、公式法、十字相乘法(初三教材有詳細的講解),並且在高中的數學函數中,十字相乘用的頻率是比較多的。
  • 中考數學解題秘密武器:十字相乘法解析
    十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。  「十字相乘法」雖然比較難學,但是學會了它, 用十字相乘法來解題的速度比較快,能夠節約時間,而且運算量不大,不容易出錯。
  • 因式分解方法總匯,值得收藏
    因式分解是初中數學之重點和難點,這裡為各位歸納整理了分解因式的方法,以期幫助大家更好地學好分解因式這一知識,如有謬誤,盼能指正之。一、概念把多項式分解為幾個因式乘積的形式,叫分解因式,又叫因式分解。二、方法和例題(一)提取公因式法(1)公式mn十dm=m(n十d)(2)例、分解因式①2αbC十6αmC一12anC②(x十y)^2+(x十y)m+(x十y)n解①原式=2aC(b十3m一6n)②原式=(x十y)(x十y十m十n)(二)分組分解法(1)公式ma十mb十na十nb
  • 細說因式分解之分組分解法知識及解題技巧大全~
    我們在初中階段學習的因式分解的方法主要分為四大類:①提取公因式法;②公式法;③十字相乘法;④分組分解法;其中分組分解法的靈活較強且要求學生的理解能力也較高,因而要特別注意此類方法的掌握,我們本文主要講解因式分解法中的分組分解法的相關知識,至於其他未涉及內容我們將會在後續更新出來,也請大家持續關注