初中數學:因式分解之雙十字相乘法精講

2021-01-08 二哥數學

上篇文章給大家分享了因式分解的四種基本方法,今天再給大家分享一篇在十字相乘法基礎上演繹而來的雙十字相乘法來進行因式分解。

十字相乘法是二次三項式進行因式分解的重要方法,分解的要領是「頭尾分解,交叉相乘,求和湊中,試驗篩選」,十字相乘法只適用於二次三項式的因式分解,但是對於形如ax^2十bxy十cy^2十dx+ey十f的多項式就顯得有點力不從心了,此時運用十字相乘法分解顯然是無法一步到位的,需要兩次運用到十字相乘法。

雙十字相乘法的具體方法:

①將a分解成mn的乘積作為一組;

②將c分解成pq的乘積作為第二組;

③將f分解成jk的乘積作為第三組;

④使mq+np=b,pk十qj=e,mk十nj=d成立,

雙十字相乘法分解因式模式

則多項式ax^2十bxy十cy^2十dx+ey十f可分解為:(mx+py+j)(nx+qy+k)的形式。

例1、分解因式:4X^2-4XY-3Y^2-4X+10Y-3。

分析:通過細緻觀察之後,我們發現前三項可以運用十字相乘法分解成(2X-3Y)(2X十Y),然後再把(2X-3Y),(2X十Y)作為一個一次因式,再次運用十字相乘法分解,如下圖所示:

因式分解圖解

4X^2-4XY-3Y^2-4X+10Y-3

=(2X-3Y)(2X+Y)-4X+10Y-3

=(2X-3Y+1)(2X+Y-3)。

自然,我們也可以把這個二次六項式式轉化為關於X(Y)的二次三項式後再運用十字相乘法進行因式分解。

解法2:

4X^2-4XY-3Y^2-4X+10Y-3

=4X^2-4X(Y+1)-(3Y^2-10Y+3)

=4X^2-4X(Y+1)-(3Y-1)(Y-3)

=(2X-3Y+1)(2X+Y-3)。

例2、分解因式:mn十n^2十m一n一2。

分析:有的同學會說,二次六項式可以用雙十字分解法來進行分解,但現在這個多項式明明是個二次五項式,那也能用雙十字分解法來進行分解因式麼?

我們知道,0乘以任何數都等於0,所以我們可以把缺少的那一項當作係數為0好了。

mn十n^2十m一n一2

=0m^2十mn十n^2十m一n一2

=(0m十n十1)(m十n一2)

=(n十1)(m十n一2)。

例3、分解因式:6a^2-7ab-3b^2-ac+7bc-2c^2

分析:本題可將該多項式看成關於a,b(b,c或a,c)的二次三項式,運用雙十字相乘法進行分解。

6a^2-7ab-3b^2-ac+7bc-2c^2

=(2a-3b)(3a+b)-ac+7bc-2c^2

=(2a-3b+c)(3a+b-2c)。

或者

6a^2-7ab-3b^2-ac+7bc-2c^2

=6a^2-ac-2c^2-7ab+7bc-3b^2

=(2a+c)(3a-2c)-7ab+7bc-3b^2

=(2a+c-3b)(3a-2c+b)。

相關焦點

  • 初中數學:因式分解有哪些方法?十字相乘法因式分解4道例題全解
    因式分解方法步驟:①如果多項式的各項有公因式,那麼先提公因式;②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解④分解因式,必須進行到每一個多項式因式都不能再分解為止
  • 因式分解方法:雙十字相乘法與拆法添項法
    5、雙十字相乘法     在分解二次三項式時,十字相乘法是常用的基本方法,對於比較複雜的多項式,尤其是某些二次六項式,如4x2-4xy-3y2-4x+10y-3,也可以運用十字相乘法分解因式,其具體步驟為:     (1)用十字相乘法分解由前三次組成的二次三項式,得到一個十字相乘圖
  • 初中數學十字相乘法因式分解,簡單,容易掌握!
    因式分解,是初二數學重要內容,也是中考必考。因式分解重點考查學生計算能力和計算的捷徑,十字相乘法可以把運算趨於簡便,更容易和準確地寫出計算答案,這個方法也是要學生必須掌握的一種計算方法!而十字相乘法求字母參數的值,也是經常出現在各類考試中。
  • 初高中必學的因式分解方法——十字相乘法
    一、前言在北師版數學教材上,並沒有十字相乘法這一章,在中考中十字相乘法也不作為考點考察。但是,在初中階段,一些一元二次方程的題目使用十字相乘法可以更快的解出答案;在高中階段,十字相乘法可以說是隨時可能用到;更重要的是,十字相乘法可以很好的培養數感。
  • 重點中學學霸的筆記:數學十字相乘法因式分解
    因式分解在初中,雖然在一些重大的考試或者測驗中,直接考因式分解的題目不多,只有很少很少一部分,但是要用到因式分解的題卻很多。很多同學在解題的時候,沒把握,拿不準,大概率是因為因式分解沒有掌握透徹。那麼什麼是因式分解?因式分解就是把一個整式分解成若干個整式的積。
  • 初中數學因式分解例題精講,建議收藏保存,可以轉給孩子
    之前我們詳細講解了因式分解的概念和幾種常用的分解方法,例如提公因式法、公式法、分組分解法、換元法,拆添相法,十字相乘法。尤其是十字相乘法,不僅僅在因式費解裡很重要,在後期學的一元二次方程求解裡也是非常重要的方法。
  • 2019年中考數學最全的因式分解方法:雙十字相乘法與拆法添項法
    雙十字相乘法 在分解二次三項式時,十字相乘法是常用的基本方法,對於比較複雜的多項式,尤其是某些二次六項式,如4x2-4xy-3y2-4x+10y-3,也可以運用十字相乘法分解因式,其具體步驟為: 1)用十字相乘法分解由前三次組成的二次三項式,得到一個十字相乘圖 2)把常數項分解成兩個因式填在第二個十字的右邊且使這兩個因式在第二個十字中交叉之積的和等於原式中含y
  • 一題二套三相乘四分組,因式分解最強十字口訣!轉給初中的娃
    初中階段的因式分解的重要性對於剛上初中的孩子來說不言而喻,然而很多老師都課堂上花了時間講解,但尷尬的是孩子總是做的不好,那問題到底是出在孩子身上?還是老師沒有教好?個人覺得不管原因出在哪,咱們更多的是放在知識點本身,接下來吳老師帶你們一起探究一下如何理解初中階段因式分解的十字口訣!
  • 一元二次方程的解法:公式法、因式分解法和十字相乘法基礎練習
    初中數學,一元二次方程的解法:公式法、因式分解法和十字相乘法基礎練習。這節課是基礎課,主要講解除配方法外的其它解法,其中十字相乘法不是一種獨立的解法,它應該歸類於因式分解法,因為有不少學生對這種解法不熟悉,所以單獨列為一類進行講解。
  • 初一數學一點通:如何理解和掌握十字相乘法進行《因式分解》
    通過這段時間的學習,相信大家對整式相乘、因式分解都有了很好的認識,雖然我們書上也介紹了提公因式、代入公式和分組分解等方法,但你們發現沒有,對於因式分解的題目,沒有普遍適用的方法,怎麼分解完全取決於我們的觀察分析,做出判斷和選擇。
  • 初中數學:如何判斷ax^2+bx+c能用十字相乘法因式分解?
    十字相乘法的公式一般式當a=b=1時,為最常見二次項係數為1時的十字相乘法公式判斷ax^2+bx+c(a≠0)能用十字相乘法因式分解對於二次三項式ax^2+bx+c(a≠0),如果判別式△=b^2-4ac的值是一完全平方數,那麼ax^2+bx+c一定可以用十字相乘法因式分解。
  • 一道白俄羅斯初中數學競賽題:分解因式,難住不少學霸
    大家好,今天和大家分享一道白俄羅斯的初中數學競賽題:分解因式a^4-3a+4a-3。這道題看似簡單,卻難住了不少初中的學霸,還有網友調侃到:以為只有中國才學這些東西呢,沒想到大家都在學啊,還真是公平。因式分解是中學數學非常重要的一個知識點,在解一元二次方程、一元二次不等式、二次函數、化簡求值等題型中經常都會用到。書本中因式分解的題目一般比較簡單,考查的方法主要有提公因式法、公式法和十字相乘法等,其中最重要的還是十字相乘法。下面我們一起來看一下這道白俄羅斯的競賽題。這道題是一個4次多項式的分解,下面介紹3種方法。
  • 初一下學期,因式分解高級解法之十字相乘法,需要掌握的方法
    雖然十字相乘法並沒有作為知識點在書本中有所體現,但是很多題目都能用到這種方法。在上一篇文章中,我們沒有過多提及這種方法,本篇文章我們專門來說一下因式分解的高級解法:十字相乘法。十字相乘法同樣的適用於二次三項式,本質上是將我們前面講的配方法、完全平方公式和平方差公式三個知識點結合起來使用。在二次三項式ax2+bx+c中,ax2稱為二次項,bx為一次項,c為常數項,我們主要對這樣的二次三項式用十字相乘法進行因式分解。
  • 用十字相乘法因式分解方法總結,送給一直有疑問的孩子
    因式分解是中考中必考的一知識點,因式分解的方法有很多,很多同學對用十字相乘法因式分解一直存在疑惑,今天老師帶你們重新來學一下用十字相乘法因式分解,送給一直有疑問的孩子,幫你查缺補漏。首先學生需要知道什麼是十字相乘法。十字相乘法有一個公式那就是:x^2+(a+b)x+ab=(x+a)(x+b)。接下來我們以幾個例子來看一下:(如下圖)
  • 初中數學培優 七年級下 第八講 因式分解(初中競賽難點之一)
    初中數學培優 七年級下 第八講 因式分解(初中競賽難點之一)二、重點難點分析1.因式分解的實質是多項式的恆等變形,是將多項式轉化為幾個整式的積的形式,和整式乘法是互逆關係。2.提取公因式法是因式分解的基本方法,關鍵在於找公因式。找公因式的方法是:一看係數,二看相同的字母或因式。
  • 初中數學:因式分解及其常用方法、技巧和應用
    因式分解是初中數學的難點,也是初中數學的重要內容之一,是學習分式、根式、和一元二次方程的重要基礎,是解決許多數學問題的重要「工具」,也是中考的一個重要考點,所以學好因式分解很重要,下面跟著二哥一起學習一下吧。因式分解:把一個多項式化成幾個整式的積的形式,叫作多項式的因式分解。
  • 「方法技巧」初高中必須會的數學方法之三——十字相乘法
    十字相乘法是因式分解中十二種方法之一,另外十一種分別是:1分組分解法2.拆添項法 3.配方法4.因式定理(公式法)5.換元法6.主元法7.特殊值法8.待定係數法9.雙十字相乘法10.二次多項式11.提公因式法。難點:靈活運用十字分解法分解因式。
  • 十字相乘因式分解解題技巧以及考察方式匯總
    中考數學必考考點十字相乘因式分解詳解hello,這裡是尖子生數理化教育,很高興又和大家見面了。這次課程我們就為大家講解一下十字相乘因式分解相關的答題技巧和考點吧。求解方法:將二次項的係數和常數項分別進行分解,調角相乘再相加求得的是一次項。
  • 日本初中數學競賽題:分解因式,中國學生:確定不是送分題?
    大家好,本文和大家分享一道日本初中數學競賽題:分解因式。分解因式是初中數學非常重要的知識板塊,國內學生都會進行大量的練習,不少國內學生看到這道題後表示這就是一道送分題,甚至有學生表示這道題還沒有中考題難。下面我們一起來看一下這道題。
  • 初中因式分解全攻略
    因式分解是指把一個多項式分解為兩個或多個整式的積的過程。因式分解在數學求根、解一元二次方程等方面有很廣泛的應用,是解決許多數學問題的有力工具。初中所接觸的因式分解是很簡單的。方法如下:提公因式法如果一個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。例:ma+mb+mc=m(a+b+c)公式法:1、平方差公式:即兩個數的平方差,等於這兩個數的和與這兩個數的差的積。