利用勾股數秒解特殊直角三角形

2021-01-08 若葉小學堂

常見4組勾股數助記口訣:

勾三股四弦五;(3、4、5)5·12,記一生。(5、12、13)8月15在一起,(8、15、17)企鵝是個二百五。(7、24、25)

勾股數的性質

如果a、b、c是一組勾股數,則ma、mb、mc也是一組勾股數(m不為0)。

應用

1、直角三角形的兩條直角邊分別是15cm、36cm,則它的斜邊是( )cm。

利用勾股數5、12、13。15是5的3倍,36是12的3倍,所以斜邊長是13的3倍。

2、直角三角形一條直角邊長24cm,斜邊長51cm,另一條直角邊長( )cm。

利用勾股數8、15、17。24是8的3倍,51是17的3倍,所以另一條直角邊長是15的3倍。

不僅小題可以用,做大題時也可以用。利用勾股定理列出算式,但是不需要平方開方,可以直接寫出得數。

勾股數公式

m、n同奇同偶,且m>

此勾股數公式可以得出所有互質勾股數。

當n=1,m=3時,可以得到勾股數3、4、5;

當n=1,m=5時,可以得到勾股數5、12、13;

當n=1,m=7時,可以得到勾股數7、24、25;

當n=1,m=9時,可以得到勾股數9、40、41;

當n=3,m=5時,可以得到勾股數8、15、17;

…… ……

常見互質勾股數

3、4、5;5、12、13;7、24、25;

8、15、17;9、40、41;11、60、61;

12、35、37;13、84、85;16、63、65;

20、21、29;20、99、101.(11組)

有趣的性質

(1)勾股數中必有3、4、5的倍數;

5、12、13中,12是3和4的倍數,5是5的倍數;7、24、25中,24是3和4的倍數,25是5的倍數;8、15、17中,8是4的倍數,15是3和5的倍數;……

(2)互質勾股數中4的倍數與最大的數的和差都是平方數;

3、4、5,5+4=9=3^2,5-4=1=1^2;

5、12、13,13+12=25=5^2,13-12=1^2;

…… ……

相關焦點

  • 八年級數學,直角三角形,勾股定理考點及知識點
    知識·規律·方法①勾股定理的應用用於直角三角形中,斜邊的平方等於兩條直角邊的平方和。② 包勾股定理的逆定理:有一條邊的平方等於其他兩邊的平方和的三角形是直角三角形。勾股定理最早的文字記載見於歐幾裡得(公元前三世紀)的《幾何原本》第一卷命題47,「直角三角形斜邊上的正方形面積等於兩直角邊上正方形面積之和」。
  • 直角三角形的性質及其證明(含勾股定理)初二
    直角三角形也是初二所學的重要圖形之一,性質非常多,比等腰要多。今天就來匯總一下。
  • 直角三角形相關性質,勾股證明
    幾何模型體系視頻課程(點此查看)    今天的圖是圍繞直角三角形的性質來展開的,初中階段會學習直角三角形的4條性質:銳角互餘(似乎不用展示)勾股定理(最重要)斜邊中線性質(易忘)「30度」的直角三角形(與三角函數如出一轍)一、勾股定理的證明方法:01:課本證明:
  • 初二上學期,直角三角形滿足勾股定理,那麼銳角、鈍角三角形呢
    我們知道直角三角形三邊滿足:斜邊的平方等於兩直角邊的平方和。那麼,銳角三角形與鈍角三角形的三邊滿足什麼條件呢?1.銳角三角形三邊平方之間的關係我們先來研究下,銳角三角形三邊的平方滿足什麼關係。設CD為x,則有BD=a-x在直角三角形ACD中,根據勾股定理,有AD^2=AC^2-CD^2=b^2-x^2,在直角三角形BCD中,根據勾股定理,有AD^2=AB^2-BD^2=c^2-(a-x)^2,即b^2-x
  • 中考數學必備技能,構造直角三角形,使用勾股定理解題
    在中考幾何題中,經常使用勾股定理來求線段的長,特別是在綜合題中,有時需要自己構造直角三角形,對於這樣的題,做輔助線是個難點,要學會具體問題具體分析,下面這道題是2018年福建省的一道中考填空題,咱們一起來分析:分析:使用三角尺組合成幾何圖形,是中考的熱點題型,對於本題,求CD的長
  • 中考數學專題複習:直角三角形
    【解後感悟】取AB的中點M,連接ME,在AD上截取ND=DF,設DF=DN=x,則NF=x,再利用矩形的性質和已知條件證明△AME∽△FNA,利用相似三角形的性質:對應邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出
  • 初中數學直角三角形必備知識點
    2分鐘前 · 優質教育領域創作者初中直角三角形的學習主要從以下幾方面去學習:直角三角形的定義:這個比較簡答:有一個角是直角的三角形。在這個定義下需要注意以下幾點:直角三角形是特殊的三角形,那麼也必然滿足三角形的邊角關係,即:內角和為180度;三角形的兩邊之和大於第三邊,兩邊之差小於第三邊。直角三角形的性質1、角的性質:直角三角形的兩銳角互餘,比較簡單2、邊的性質:直角三角形的三邊滿足勾股定理,這是直角三角形最重要的一條性質,逢考必考,必須要熟練掌握。
  • 2019中考數學知識點:直角三角形
    1、有一個角為90°的三角形,叫做直角三角形。   直角三角形可用Rt△表示,如直角三角形ABC寫作Rt△ABC。   直角三角形是一種特殊的三角形,它除了具有一般三角形的性質外,具有一些特殊的性質:2、性質性質1:直角三角形兩直角邊的平方和等於斜邊的平方   性質2:在直角三角形中,兩個銳角互餘   性質3:在直角三角形中,斜邊上的中線等於斜邊的一半。(即直角三角形的外心位於斜邊的中點,外接圓半徑R=C/2)。
  • 中考數學:解直角三角形問題,掌握技巧,定拿滿分!
    在中考數學試卷中,解直角三角形問題是中考必考題目。一般分值在10分左右,掌握此類題解題技巧,抓滿分不成問題。此類題涉及的知識點:一、在直角三角形中(1)邊:勾股定理。在直角三角形中,斜邊中線等於斜邊一半。
  • 中考數學專題複習:第18講直角三角形
    第18講 直角三角形考點分析1、直角三角形的性質2、直角三角形的判定與拓展思想方法基本方法:面積法,用面積法證題是常用的方法之一,使用這種方法時一般是利用某個圖形的多種面積求法或面積之間的和差關系列出等式,從而得到要證明的結論
  • 全等三角形判定之斜邊、直角邊定理,總結直角三角形的判定方法
    直角三角形是三角形中特殊的存在,有一個角是90°,其它兩個角互餘。初中階段,直角三角形的考點也是非常的多,例如勾股定理,直角三角形的全等證明。在全等三角形證明中,直角三角形由於其特殊性,有專屬於直角三角形的判定方法。
  • 直角三角形,考的不僅是勾股定理,關鍵在於應用
    同時,在實際生活工作中,解直角三角形的知識又廣泛應用於測量、工程技術和物理之中,因此,解直角三角形的應用題利於提高學生分析問題和解決問題的能力,培養空間想像的能力。中考數學對於解直角三角形的應用考查,主要是涉及仰角、俯角、方位角、坡度等重要知識點,今天我們選擇幾道典型中考試題進行分析和研究,希望能幫助大家學會分析此類題型,掌握相關的解題規律。
  • 一直角三角形繞另一直角三角形斜邊中點旋轉相似求線段長
    模型解讀此種題型特點:兩個全等直角三角形,其中一個直角三角形,繞另一個直角三角形斜邊中點旋轉,構成新的三角形,已知其中三角形相似,求線段長或者某線段長等於多少時,其中的三角形相似。解題關鍵點:①相似三角形的判定與性質;②旋轉的性質;③勾股定理;④等腰三角形的判定;⑤直角三角形斜邊上的中線性質等知識.
  • 中考數學題型:解直角三角形解題分析、常作的輔助線
    一般地,直角三角形中,除直角外,共有五個元素,即三條邊和兩個銳角。由直角三角形中的已知元素,求出其餘未知元素的過程,稱之為解直角三角形。利用直角三角形的邊角關係,知道其中的兩個元素(至少有一個是邊),就可以求出其餘三個未知元素。
  • 初中數學定理:直角三角形定理
    定理:在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半   判定定理:直角三角形斜邊上的中線等於斜邊上的一半   勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
  • 九年級數學,學習銳角三角函數,這些解直角三角形知識必須掌握!
    【要點注釋】這部分知識屬於「解直角三角形」的基礎知識,要想學好解直角三角形,我們就必須先掌握直角三角形的邊角關係,重點掌握「勾股定理」和「直角三角形的兩銳角互餘」知識,同時對於「正弦」、「餘弦」以及「正切」的邊角關係要
  • 直角三角形理論應用
    一、歷年考情幾何類題型在國考和聯考數量關係中屬於必考題型,由於幾何的知識點比較多,考察的題型變化形式多樣,今天,我們就幾何中一個重要的知識點,直角三角形做具體的講解。二、直角三角形性質直角三角形兩直角邊的平方和等於斜邊的平方。
  • 關於特殊三角形邊角關係的總結
    三角形既是平面幾何的基礎,也是幾何學習的重點。我們從小學開始接觸學習三角形,到現在已經積累了不少關於三角形的知識。為了更好地掌握,需要我們對這些知識進行總結,找到其中的一般性與特殊性,有利於以後的學習。下面我就對特殊三角形進行了一點總結,希望可以和大家共同探討學習。
  • 2018中考數學知識點:直角三角形的判定公式
    在即將到來的期末考試中,關於直角三角形的判定試題一定會出現。   直角三角形的判定   判定1:有一個角為90°的三角形是直角三角形。   判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。
  • 2020初三數學複習:實現數量與圖形轉化的最重要工具,直角三角形
    分析將△BPC繞點B逆時針旋轉60°得△BEA,根據旋轉的性質得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP於點FAP=3,PE=4,根據勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數,在直角△APF中利用三角函數求得AF和PF的長,則在直角△ABF