【學術前沿】史岸冰/林瓏合作揭示LET-502/ROCK通過促進分選內吞體...

2020-12-07 澎湃新聞

小GTP酶 (small GTPase)Rab5/RAB-5定位於早期內吞體,募集效應因子以調控包括內吞循環運輸在內的多類型生物學過程【1-3】,例如Rab5效應蛋白Rabenosyn-5與Rab4、膜塑性蛋白EHD1相互作用並促進循環運輸【1,4】。Rab5/RAB-5活性受到精密時空調控,對RAB-5活性的動態管理對於從早期內吞體至循環途徑的貨物輸送至關重要。在秀麗線蟲腸上皮細胞中,組成型活性RAB-5(Q78L)的過表達顯著損害循環運輸,而CED-10/Rac1通過募集TBC-2下調RAB-5活性【5】。後續研究還發現,RAB-10和BAR結構域蛋白AMPH-1/Amphiphysin也能夠募集TBC-2至內吞體,RAB-10或AMPH-1缺失導致內吞體膜上活性RAB-5增加,循環貨物滯留在早期內吞體【6】。

Rab活性受鳥嘌呤核苷酸交換因子(GEFs)和Rab GTPase激活蛋白(GAPs)調節【7】。結合GTP的活性態Rabs通常與不同內膜結構結合,與膜上效應蛋白相互作用以實現功能,而結合GDP的無活性態Rabs大多位於細胞質中【8】。作為重要分子開關,Rab5/RAB-5活性需要由相應的GEF和GAP嚴格管理,以保障正確的貨物分選運輸。TBC-2是人類TBC1D2A和TBC1D2B的線蟲同源物【9】。TBC1D2A具有Rab7-GAP活性,與LC3和LRRK1相互作用以調節自噬【10,11】,TBC1D2B與Rab22之間存在相互作用,但其細胞功能有待進一步闡明【12】。與哺乳動物同源物不同,TBC-2在內吞體上促進RAB-5失活,促進RAB-5到RAB-7的轉化【9】。秀麗線蟲基因組編碼三種潛在RAB-5-GEF蛋白:RIN-1,RABX-5和RME-6 【13-15】。RME-6駐留在網格蛋白包被囊泡中促進內吞【14】,而RABX-5定位於早期內吞體,與RAB-5-to-RAB-7轉化有關【13】。

ROCK最初被表徵為Rho效應因子,其actin相關功能在高爾基體結構維持、腎纖毛髮生和內皮完整性方面被廣泛報導【16-19】。LET-502是ROCK的線蟲同源物【20】,作為RHO-1/Rho效應因子參與P細胞遷移和胚胎形態發生【21-23】。2020年9月22日,華中科技大學基礎醫學院林瓏和史岸冰合作在Cell Reports在線發表了題為LET-502/ROCK regulatesendocytic recycling by promoting activation of RAB-5 in a distinctsubpopulation of sorting endosomes (LET-502/ROCK通過促進分選內吞體亞群上RAB-5活化調節內吞循環運輸) 的研究論文。

通過全基因組RNAi篩選,研究人員發現LET-502是一種新型循環調節因子。在腸上皮細胞中,LET-502和RAB-5在內吞體上共定位,LET-502缺失導致內吞體上的RAB-5標記水平下降。值得注意的是,LET-502僅與結合GDP的無活性態RAB-5相互作用,且LET-502促進RABX-5與無活性態RAB-5(S33N)間的相互作用,促進RABX-5的RAB-5-GEF活性,提示LET-502和RABX-5互作可促進RABX-5-VPS9結構域從其自抑制構象中釋放。研究人員進一步對TBC-2/RAB-5-GAP、CED-10/Rac1與LET-502之間的遺傳學關係進行了解析,發現功能衝突的LET-502和TBC-2同時缺失會導致RAB-5在內吞體上過度積累,暗示CED-10可能在時空水平調節RAB-5定位:在CED-10的總控下,TBC-2負調節RAB-5活性,然後RAB-5被LET-502-RABX-5模塊重新激活。受以上結果的啟發,研究人員分析了LET-502-RABX-5模塊和RME-6的功能位置,嘗試勾勒RAB-5活性管理的空間特徵。他們發現在缺失RABX-5/RAB-5-GEF或其輔助因子LET-502的細胞中,RAB-5主要殘留於細胞外圍的內吞體,而RME-6/RAB-5-GEF缺失導致細胞質深處RAB-5陽性結構的殘留,TBC-2過表達則廣泛減少RAB-5的內吞體定位,沒有空間差異性。這些結果表明RABX-5和RME-6的功能位置不同,分別影響RAB-5在兩個空間分布不同的內吞體亞群上的駐留。TBC-2介導細胞外圍分選內吞體上的RAB-5失活,此後LET-502在細胞質深處內吞體亞群上協助再次激活RAB-5,以維持正常的循環運輸進程。

基礎醫學院博士研究生張文娟為該論文的第一作者,林瓏副教授和史岸冰教授為共同通訊作者。

原文連結:

https://doi.org/10.1016/j.celrep.2020.108173

參考文獻

向上滑動閱覽

1.Naslavsky, N., et al., Rabenosyn-5 and EHD1 interact andsequentially regulate protein recycling to the plasma membrane. Mol BiolCell, 2004. 15(5): p. 2410-22.

2. Rojas,R., et al., Regulation of retromerrecruitment to endosomes by sequential action of Rab5 and Rab7. J CellBiol, 2008. 183(3): p. 513-26.

3.Grant,B.D. and J.G. Donaldson, Pathways and mechanismsof endocytic recycling. Nat Rev Mol Cell Biol, 2009. 10(9): p. 597-608.

4.deRenzis, S., B. Sonnichsen, and M. Zerial, DivalentRab effectors regulate the sub-compartmental organization and sorting of earlyendosomes. Nat Cell Biol, 2002. 4(2):p. 124-33.

5.Sun,L., et al., CED-10/Rac1 regulatesendocytic recycling through the RAB-5 GAP TBC-2. PLoS Genet, 2012. 8(7): p. e1002785.

6.Liu,O. and B.D. Grant, Basolateral EndocyticRecycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 toEndosomes. PLoS Genet, 2015. 11(9):p. e1005514.

7.Lamber,E.P., A.C. Siedenburg, and F.A. Barr, Rabregulation by GEFs and GAPs during membrane traffic. Curr Opin Cell Biol,2019. 59: p. 34-39.

8.Stenmark,H., Rab GTPases as coordinators of vesicletraffic. Nat Rev Mol Cell Biol, 2009. 10(8):p. 513-25.

9.Chotard,L., et al., TBC-2 regulatesRAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans. MolBiol Cell, 2010. 21(13): p. 2285-96.

10.Carroll,B., et al., The TBC/RabGAP Armuscoordinates Rac1 and Rab7 functions during autophagy. Dev Cell, 2013. 25(1): p. 15-28.

11.Toyofuku,T., et al., Leucine-Rich Repeat Kinase 1Regulates Autophagy through Turning On TBC1D2-Dependent Rab7 Inactivation.Mol Cell Biol, 2015. 35(17): p. 3044-58.

12. Kanno,E., et al., Comprehensive screening fornovel rab-binding proteins by GST pull-down assay using 60 different mammalianRabs. Traffic, 2010. 11(4): p.491-507.

13. Poteryaev,D., et al., Identification of the switchin early-to-late endosome transition. Cell, 2010. 141(3): p. 497-508.

14. Sato,M., et al., Caenorhabditis elegans RME-6is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol,2005. 7(6): p. 559-69.

15.Doi,M., et al., The novel Rac effector RIN-1regulates neuronal cell migration and axon pathfinding in C. elegans.Development, 2013. 140(16): p.3435-44.

16.Camera,P., et al., Citron-N is a neuronalRho-associated protein involved in Golgi organization through actincytoskeleton regulation. Nat Cell Biol, 2003. 5(12): p. 1071-8.

17.Stewart,K., et al., A Point Mutation in p190ARhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects.PLoS Genet, 2016. 12(2): p.e1005785.

18.Soriano-Castell,D., et al., ROCK1 is a novel Rac1effector to regulate tubular endocytic membrane formation duringclathrin-independent endocytosis. Sci Rep, 2017. 7(1): p. 6866.

19.Lisowska,J., et al., The CCM1-CCM2 complexcontrols complementary functions of ROCK1 and ROCK2 that are required forendothelial integrity. J Cell Sci, 2018. 131(15).

20.Wissmann,A., et al., Caenorhabditis elegansLET-502 is related to Rho-binding kinases and human myotonic dystrophy kinaseand interacts genetically with a homolog of the regulatory subunit of smoothmuscle myosin phosphatase to affect cell shape. Genes Dev, 1997. 11(4): p. 409-22.

21.Spencer,A.G., et al., A RHO GTPase-mediatedpathway is required during P cell migration in Caenorhabditis elegans. ProcNatl Acad Sci U S A, 2001. 98(23):p. 13132-7.

22.Gally,C., et al., Myosin II regulation duringC. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinaseswith different roles. Development, 2009. 136(18): p. 3109-19.

23. Chan,B.G., et al., The Rho guanine exchangefactor RHGF-2 acts through the Rho-binding kinase LET-502 to mediate embryonicelongation in C. elegans. Dev Biol, 2015. 405(2): p. 250-9.

1980-2020

原標題:《【學術前沿】史岸冰/林瓏合作揭示LET-502/ROCK通過促進分選內吞體亞群上RAB-5活化調節內吞循環運輸》

閱讀原文

相關焦點