參考文獻:
[1] Gillings, R. J. (1974). The Recto of the Rhind mathematical papyrus how did the ancient Egyptian scribe prepare it. Archive for History of Exact Sciences, 12(4), 291-298.
[2] 曹則賢 (2019). 驚豔一擊:數理史上的絕妙證明. 北京:外語教學與研究出版社.
[3] Stillwell, J . (2010) Mathematics and its history. New York: Springer-Verlag.
[4] Pomerance, Carl (1982). The Search for Prime Numbers. Scientific American. 247 (6): 136–147.
[5] Weisstein, Eric W. "Goldbach Conjecture." From MathWorld--A Wolfram Web Resource. https:// mathworld.wolfram.com/ Goldbach Conjecture.html.
[6] Hardy, G. H. and Littlewood, J. E. (1923). Some Problems of Partitio Numerorum (III): On the expression of a number as a sum of primes. Acta Mathematica. 44: 1–70.
[7] Viggo Brun (1919). "La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 + ..., où les dénominateurs sont nombres premiers jumeaux est convergente ou finie". Bulletin des Sciences Mathématiques. 43: 100–104, 124–128.
[8] 王元 (1984). The Goldbach Conjecture. New Jersey: World Scientific.
[9] Halberstam, Heini and Richert, Hans-Egon. Sieve Methods. London Mathematical Society Monographs 4. London-New York: Academic Press. 1974.
[10] 潘承洞,潘承彪 (1981). 哥德巴赫猜想. 北京:科學出版社.
[11] Helfgott, H. A. (2013). Major arcs for Goldbach's problem. arXiv preprint arXiv:1305.2897.
[12] Rademacher, H. (1924, December). Beiträge zur viggo brunschen methode in der zahlentheorie. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (Vol. 3, No. 1, pp. 12-30). Springer-Verlag.
[13] Estermann, T. (1932). Eine neue Darstellung und neue Anwendungen der Viggo Brunschen Methode. Journal für die reine und angewandte Mathematik, 1932(168), 106-116.
[14] Kuhn, P. (1941). Zur Viggo Brun'schen Siebmethode. I. Norske Vid. Selsk. Forh., Trondhjem, 14, 145-148.
[15] Selberg, A. (1984). On an elementary method in the theory of primes. In Goldbach Conjecture (pp. 151-154).
[16] "On the representation of even numbers as sums of a prime and an almost prime number,"Izv. Akad. Nauk. SSSR Ser. Mat., Vol. 12 (1948), pp. 57-78. (In Russian.)
[17] 陳景潤. On the representation of a large even integer as the sum of a prime and the product of at most two primes. 科學通報(英文版). 1966, (9): 385–386.
[18] 陳景潤. 大偶數表為一個素數及一個不超過二個素數的乘積之和. 中國科學A輯. 1973, (2): 111–128.
[19] 徐遲. 哥德巴赫猜想. 人民文學. 1978, (1): 53–68.
[20] https://asone.ai/polymath/ index.php?title=Bounded _gaps _between_primes.