初中數學,由解求一元二次方程,4種重要題型

2020-12-06 孫老師數學

初中數學,由解求一元二次方程,4種重要題型。咱們已經講過因式分解法求一元二次方程的解,令一個因式等於0,就可以得到方程的一個解,所以如果m和n是一元二次方程的兩個解,則這個方程就是(x-m)(x-n)=0,下面的4道題分別從不同角度考查了因式分解法的這個性質。

第1題,不難,只需按要求確定出方程的另一個根,可以是-2.5、-2.6或-2.7等等。

第2題,令因式2x-3等於0就可以得到方程的一個解,把這個解代入方程即可求出p的值。

第3題,由兩個根可以寫出這個一元二次方程,然後只需使係數整數化就可以了。

第4題,首先,甲抄錯了常數項,說明使用兩根8和2得到的一元二次方程,二次項係數和一次項係數是正確的;其次,乙抄錯了一次項係數,說明使用兩根-9和-1得到的一元二次方程,二次項係數和常數項是正確的;根據這兩個結論就可以確定出一元二次方程。

初一、初二、初三、基礎、提高、真題講解,專題解析,孫老師數學,全力輔助你成為數學解題高手。點頁面上方「孫老師數學」進入「孫老師數學主頁」,然後點「關注」,可以查看更多課程!加油!

相關焦點

  • 初中數學:一元二次方程基礎知識點
    初中數學:一元二次方程基礎知識點一元二次方程基本知識點一元二次方程知識框架一元二次方程的有關概念1. 一元二次方程的概念:通過化簡後,只含有一個未知數(一元),並且未知數的最高次數是2(二次)的整式方程,叫做一元二次方程。
  • 一元二次方程解的個數問題,5大重要題型,詳盡解析
    初中數學,一元二次方程解的個數問題,5大重要題型,詳盡解析。這節課主要練習兩個問題,一、如何判斷一元二次方程解的個數:對於△=b-4ac,其大於0時,方程有兩個不相等的實數根,等於0時,方程有兩個相等的實數根,小於0時,方程無實數根;二、給出一元二次方程實數解的個數,可以得出△=b-4ac的符號:有兩個不等實根時,△大於0,有兩個相等實根時,△等於0,無實根時,△小於0。
  • 一元二次方程易錯的5個題型,能全對的真是學霸!
    在初中的數學考試中,成績不理想的主要原因不是題難不會做,而是在一些題型上一錯再錯。每一章都有一些易錯的題。下面我就來介紹下一元二次方程這章的幾個易錯題型,希望能幫助各位初中小夥伴減少不必要錯誤,提高數學成績。
  • 一元二次方程,面積類應用題,4種重要題型詳細分析
    初中數學,一元二次方程,面積類應用題,4種重要題型詳細分析。面積(包括體積)問題是一元二次方程應用題中的重點之一,但稱不上是難點,下面這4道練習題分別代表一種常見的面積類型,好好研究一遍,基本上就可以掌握面積問題列方程的特點。
  • 初中數學一元二次方程根的判別式的應用,詳解題型,應用全覆蓋...
    初中數學中,一元二次方程是學習的重點,而一元二次方程中根的判別式的應用可以說是考試中必考的內容,而且根的判別式出題類型也是非常的多,今天和同學們一起總結學習初中數學中一元二次方程根的判別式的應用,通過題型詳解,進行根的判別式這一知識點應用的全覆蓋,幫助同學們掌握這部分的知識點。
  • 初中數學,如何利用函數圖象解一元二次不等式(方程)
    大家好,這裡是周老師數學課堂,歡迎來到百家號學習!在初中數學的學習過程中,相比幾何綜合題來說,代數綜合題倒不需要太多巧妙的方法,但是對考生的計算能力以及代數功底有了比較高的要求。中考數學當中,代數問題往往是以一元二次方程(不等式)與二次函數為主體,多種其他知識點輔助的形式出現的。一元二次方程(不等式)與二次函數問題當中,純粹的一元二次方程解法通常會以簡單解答題的方式考察。但是在後面的中難檔大題當中,通常會和根的判別式,整數根,不等式的解集和拋物線等知識點結合的題型出現,那麼就需要我充分利用二次函數圖象性質解題。
  • 初三數學《一元二次方程》題型分類總結
    一元二次方程作為進入初三的第一個章節,其重要性不言而喻,一元二次方程即是中考數學中的重要考察章節,也為二次函數的學習打下基礎。換言之,學好一元二次方程的內容將會給初中數學最重要最難的二次函數部分打下堅實的基礎。同時一元二次方程將會出現在相似三角形,圓,二次函數等重要章節的計算部分。
  • 2019年中考數學分類彙編,一元二次方程的四個考點
    一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,它也是一種數學建模的方法。學好一元二次方程是學好二次函數不可或缺的,是學好高中數學的基礎;應該說,一元二次方程是初中的重點,在2019年中考中,這四個知識點是考試的重點。
  • 中考數學第一輪複習6,一元二次方程考點梳理,明確複習方向
    一元二次方程是初中數學的重點和難點,在近幾年常以應用題和綜合題的形式出現,所佔分值5至10分。預計2019年將考察一元二次方程的解、根的判別式及應用,以此為工具和手段解決綜合問題,考查形式多樣;一次函數與反比例函數、二次函數圖象的交點問題也會涉及此內容。
  • 初中數學解一元二次方程,四種解法各有不同,學會靈活運用
    一元二次方程是中考的重點內容,也是初中數學學習的重點,解一元二次方程是重要的應用,不管是直接開平方,還是配方法、公式法、因式分解法等等方法解方程,四種解法各有不同,不同的依據,不同的適用範圍,都需要同學們重點掌握的,然後根據題目的實際情況,選擇最佳的解題方法。
  • 一元二次方程的重要考點,它的五個題型不掌握,這章難考高分
    根的判別式是一元二次方程這章的重要考點,對於一元二次方程ax2+bx+c=0(a≠0),式子b2-4ac的值決定了一元二次方程的根的情況,利用根的判別式可以不解方程直接判斷方程根的情況,反過來,利用方程根的情況可以確定方程中待定係數的值或取值範圍。
  • 2021初中七年級代數知識點:一元二次方程的解法
    中考網整理了關於2021初中七年級代數知識點:一元二次方程的解法,希望對同學們有所幫助,僅供參考。   一元二次方程的解法 (10分)   1、直接開平方法   利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用於解形如 的一元二次方程。
  • 例題詳解,如何利用圖像求一元二次方程的根?
    大家好,歡迎走進周老師數學課堂,每天學習一點點,堅持帶來大改變。今天是2019年3月19日,我分享的內容是如何利用圖像求一元二次方程的根。方程與函數是初中數學中的重要內容,方程與函數之間存在著密切的聯繫,二次函數的圖像與x軸交點的橫坐標即為相應的一元二次方程的解,課程標準要求我們能利用二次函數的圖象求一元二次方程的近似解,下面舉例說明。
  • 數學專題——一元二次方程根的分布
    一元二次方程是初中數學中必學的內容,而且也是初中數學中的難點部分,在中考數學中所佔的比例也很大,因此學好一元二次方程極為重要。不僅如此,在歷年的高考試題中,一元二次方程總是以二次函數的形式出現,主要考查一元二次方程根的分布。基礎內容總結:
  • 一元二次函數與一元二次不等式和方程
    2019高考數學之一元二次函數與一元二次不等式1 概念一元二次函數:一個未知數,未知數的最高次數為二次。一元二次方程:一個未知數,未知數最高次數為二次的方程(等式)。基本概念2 聯繫與區別一元二次函數的圖像即可得到一元二次方程的解,其為一元二次函數圖像與
  • 中考數學專題複習:第8講一元二次方程及其應用
    真題精選例題精講類型一 一元二次方程的有關概念【解後感悟】(1)切記不要忽略一元二次方程二次項係數不為零這一隱含條件;(2)注意解題中的整體代入思想;(3)注意解方程的轉化思想與整體思想.類型二 一元二次方程的解法【解後感悟】解一元二次方程要根據方程的特點選擇合適的方法解題,但一般順序為:直接開平方法→因式分解法→公式法.一般沒有特別要求的不用配方法.解題關鍵是能把解一元二次方程轉化成解一元一次方程.
  • 中考數學診斷,一元二次解方程,配方公式大顯能
    大家好,眾所周不知我是個教數學的。今天終於輪到了一元二次方程的考點,老規矩我們來聊聊常見的題型。這個題雖然可以利用公式法解出來每一個根是多少,但最簡單的作法就是利用韋達定理即所以最後答案是,0三,解一元二次方程
  • 怎樣學好一元二次方程?好方法和好資料必不可少,趕緊備一份!
    一元二次方程是初中數學中的重點和難點,如何才能透徹的掌握這一章?知識結構圖對學習數學有著不可替代的作用,一方面體現學生對知識點的熟練掌握和理清個知識點間的內在聯繫;另一方面為以後的複習提供方面,起到事半功倍的效果。從這個一元二次方程結構圖,很直觀的看出這章的主要考點有五個。一元二次方程必須滿足三個條件:(1)只含一個未知數;(2)含未知數項的最高次數是1;(3)等號兩邊是整式。
  • 2021初中七年級數學必備公式:一元二次方程的解
    中考網整理了關於2021初中七年級數學必備公式:一元二次方程的解,希望對同學們有所幫助,僅供參考。   一元二次方程的解   -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a   相關推薦:   2021年全國各省市中考報名時間匯總   2021年全國各地中考體育考試方案匯總   2021年全國各省市中考時間匯總
  • 學霸少翻課本有原因,一元二次方程考點總結,有它誰還用課本?
    學好初中數學離不開學習的幾個環節(預習、聽課、複習鞏固與作業、總結),不論任何一個環節,都是為了更好地掌握考點。就《一元二次方程》這章來說,主要的考點有5個:(1)一元二次方程的定義;(2)解一元二次方程;(3)一元二次方程根的判別式;(4)一元二次方程根與係數的關係;(5)一元二次方程的應用。一元二次方程是只含有一個未知數,含未知數項的最高指數是2的整式方程,用式子來表示就是形如ax+bx+c=0(a≠0)。